Dtsch Med Wochenschr 2009; 134(7): 302-306
DOI: 10.1055/s-0028-1123996
Übersicht | Review article
Kardiologie, Angiologie, Genetik
© Georg Thieme Verlag KG Stuttgart · New York

Mechanismen und Möglichkeiten einer therapeutischen Stimulation der Arteriogenese

Mechanisms and potential of the therapeutic stimulation of arteriogenesisS. H. Schirmer1 , N van Royen2 , U. Laufs1 , M. Böhm1
  • 1Klinik für Innere Medizin III (Kardiologie, Angiologie und Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar
  • 2Academic Medical Center, Universität Amsterdam, Niederlande
Further Information

Publication History

eingereicht: 6.7.2008

akzeptiert: 15.1.2009

Publication Date:
05 February 2009 (online)

Zusammenfassung

Die Stimulation des Kollateralarterienwachstums (Arteriogenese) ist eine vielversprechende Alternative zur nichtinvasiven Behandlung stenosierender arterieller Gefäßkrankheiten wie der koronaren Herzkrankheit, der peripheren oder zerebralen arteriellen Verschlusskrankheit. Patienten, die einem klassischen Revaskularisationsverfahren nicht mehr erfolgreich zugeführt werden können, könnten von der Stimulation der adaptiven Arteriogenese profitieren. Die zu Grunde liegenden Mechanismen sind experimentell gut belegt. Hierzu gehören eine Erhöhung der Scherkraft bei Stenose einer größeren Arterie, Adhäsion, Transmigration und perivaskuläre Akkumulation von Monozyten um die kollateralarterielle Arteriole, Wachstumsfaktorsezernierung und Proliferation von Endothel- und glatten Gefäßmuskelzellen. Die therapeutische Stimulation der Arteriogenese durch Zytokine gelingt im experimentellen Modell bereits sehr gut. An der Umsetzung der Erkenntnisse in die klinische Praxis muss noch gearbeitet werden. Problematisch sind die biologisch-anatomischen Unterschiede zwischen dem gesundem Versuchstier und dem oft multimorbiden Patienten, mögliche schädliche Wirkungen einer pro-arteriogenen Therapie sowie die Verwendung geeigneter klinischer Endpunkte zur exakten Quantifizierung des Kollateralarterienwachstums. Erste Untersuchungen der humanen Arteriogenese zeigen große interindividuelle Unterschiede und weisen auf eine Bedeutung anti-arteriogener Mechanismen bei Patienten mit hohem kardiovaskulärem Risiko.

Summary

The stimulation of collateral artery growth (arteriogenesis) is a promising alternative approach to non-invasively treat arterial obstructive disease, such as coronary, peripheral or cerebral artery disease. Patients unable to undergo conventional revascularization strategies may benefit from adaptive arteriogenesis. Underlying mechanisms are experimentally validated and include an increase in shear stress after obstruction or occlusion of a major artery; monocyte adhesion, transmigration and perivascular accumulation, secretion of growth factors; and smooth muscle and endothelial cell proliferation and growth of pre-existent collateral arteries. Therapeutic stimulation of arteriogenesis with cytokines has been successfully performed in experimental models. Translation into clinical practice, however, has hitherto been problematic. Reasons for this include differences between the healthy laboratory animal and an often severely diseased patient, possible harmful effects of pro-arteriogenic therapies and unsuitable clinical endpoints for the detection of collateral artery growth. Recent investigations of human arteriogenesis demonstrate significant inter-individual differences and point towards the importance of anti-arteriogenic mechanisms in patients with impaired adaptive arteriogenesis and high cardiovascular risk factors.

Literatur

  • 1 Bergmann C E, Hoefer I E, Meder B. et al . Arteriogenesis depends on circulating monocytes and macrophage accumulation and is severely depressed in op/op mice.  J Leukoc Biol. 2006;  80 59-65
  • 2 Bondke A, Hillmeister P, Buschmann I R. Exact assessment of perfusion and collateral vessel proliferation in small animal models.  Circ Res. 2007;  100 e82-83
  • 3 Buschmann I R, Busch H J, Mies G, Hossmann K A. Therapeutic induction of arteriogenesis in hypoperfused rat brain via granulocyte-macrophage colony-stimulating factor.  Circulation. 2003;  108 610-615
  • 4 Cai W, Vosschulte R, Afsah-Hedjri A. et al . Altered balance between extracellular proteolysis and antiproteolysis is associated with adaptive coronary arteriogenesis.  J Mol Cell Cardiol. 2000;  32 997-1011
  • 5 Eitenmuller I, Volger O, Kluge A. et al . The range of adaptation by collateral vessels after femoral artery occlusion.  Circ Res. 2006;  99 656-662
  • 6 Epstein S E, Stabile E, Kinnaird T, Lee C W, Clavijo L, Burnett M S. Janus phenomenon: the interrelated tradeoffs inherent in therapies designed to enhance collateral formation and those designed to inhibit atherogenesis.  Circulation. 2004;  109 2826-2831
  • 7 Erbs S, Linke A, Schachinger V. et al . Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial.  Circulation. 2007;  116 366-374
  • 8 Gray C, Packham I M, Wurmser F. et al . Ischemia Is Not Required for Arteriogenesis in Zebrafish Embryos.  Arterioscler Thromb Vasc Biol. 2007;  27 2135-2141
  • 9 Grines C L, Watkins M W, Helmer G. et al . Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris.  Circulation. 2002;  105 1291-1297
  • 10 Grundmann S, van Royen N, Pasterkamp G. et al . A New Intra-Arterial DeliveryPlatform for Pro-Arteriogenic Compounds to Stimulate Collateral Artery Growth Via Transforming Growth Factor-[beta]1 Release.  J Am Coll Cardiol. 2007;  50 351-358
  • 11 Heil M, Clauss M, Suzuki K. et al . Vascular endothelial growth factor (VEGF) stimulates monocyte migration through endothelial monolayers via increased integrin expression.  Eur J Cell Biol. 2000;  79 850-857
  • 12 Helisch A, Wagner S, Khan N. et al . Impact of mouse strain differences in innate hindlimb collateral vasculature.  Arterioscler Thromb Vasc Biol. 2006;  26 520-526
  • 13 Henry T D, Annex B H, McKendall G R. et al . The VIVA Trial: Vascular Endothelial Growth Factor in Ischemia for Vascular Angiogenesis.  Circulation. 2003;  107 1359-1365
  • 14 Hoefer I E, Grundmann S, van Royen N. et al . Leukocyte subpopulations and arteriogenesis: specific role of monocytes, lymphocytes and granulocytes.  Atherosclerosis. 2005;  181 285-293
  • 15 Hoefer I E, van Royen N, Rectenwald J E. et al . Arteriogenesis proceeds via ICAM-1/Mac-1- mediated mechanisms.  Circ Res. 2004;  94 1179-1185
  • 16 Isner J M, Pieczek A, Schainfeld R. et al . Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb.  Lancet. 1996;  348 370-374
  • 17 Ito W D, Arras M, Scholz D, Winkler B, Htun P, Schaper W. Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion.  Am J Physiol Heart Circ Physiol. 1997;  273 H1255-1265
  • 18 Ito W D, Arras M, Winkler B, Scholz D, Schaper J, Schaper W. Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion.  Circ Res. 1997;  80 829
  • 19 Kinnaird T, Stabile E, Burnett M S. et al . Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms.  Circ Res. 2004;  94 678
  • 20 Laufs U, Werner N, Link A. et al . Physical Training Increases Endothelial Progenitor Cells, Inhibits Neointima Formation, and Enhances Angiogenesis.  Circulation. 2004;  109 220-226
  • 21 Lazarous D F, Unger E F, Epstein S E. et al . Basic fibroblast growth factor in patients with intermittent claudication: results of a phase I trial.  J Am Coll Cardiol. 2000;  36 1239
  • 22 Lederman R J, Mendelsohn F O, Anderson R D. et al . Therapeutic angiogenesis with recombinant fibroblast growth factor-2 for intermittent claudication (the TRAFFIC study): a randomised trial.  Lancet. 2002;  359 2053-2058
  • 23 Meier P, Gloekler S, Zbinden R. et al . Beneficial Effect of Recruitable Collaterals. A 10-Year Follow-Up Study in Patients With Stable Coronary Artery Disease Undergoing Quantitative Collateral Measurements.  Circulation. 2007;  116 975-983
  • 24 Perera D, Kanaganayagam G S, Saha M, Rashid R, Marber M S, Redwood S R. Coronary collaterals remain recruitable after percutaneous intervention.  Circulation. 2007;  115 2015-2021
  • 25 Pipp F, Heil M, Issbrucker K. et al . VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism.  Circ Res. 2003;  92 378-385
  • 26 Rajagopalan S, Mohler E R, III, Lederman R J. et al . Regional Angiogenesis With Vascular Endothelial Growth Factor in Peripheral Arterial Disease: A Phase II Randomized, Double-Blind, Controlled Study of Adenoviral Delivery of Vascular Endothelial Growth Factor 121 in Patients With Disabling Intermittent Claudication.  Circulation. 2003;  108 1933-1938
  • 27 Rehman J. An Inconvenient Truth: Recognizing Individual Differences in Arteriogenesis.  Circ Res. 2008;  102 1146-1147
  • 28 Sabia P J, Powers E R, Ragosta M, Sarembock I J, Burwell L R, Kaul S. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction.  N Engl J Med. 1992;  327 1825-1831
  • 29 Schaper W. On arteriogenesis – a reply.  Basic Res Cardiol. 2003;  98 183-184
  • 30 Schirmer S H, Buschmann I R, Jost M M. et al . Differential effects of MCP-1 and leptin on collateral flow and arteriogenesis.  Cardiovasc Res. 2004;  64 356-364
  • 31 Schirmer S H, Fledderus J O, Bot P TG. et al . Interferon-beta signaling is enhanced in patients with insufficient coronary collateral artery development and inhibits arteriogenesis in mice.  Circ Res. 2008;  102 1286-1294
  • 32 Schirmer S H, van Nooijen F C, Piek J J, van Royen N. Stimulation of Collateral Artery Growth: Travelling Further Down the Road to Clinical Application.  Heart. 2009;  95 191-197
  • 33 Schirmer S H, van Royen N. Stimulation of collateral artery growth: a potential treatment for peripheral artery disease.  Expert Rev Cardiovasc Ther. 2004;  2 581-588
  • 34 Schirmer S H, van Royen N, Baan Jr J. et al . Direct blood-sampling from the collateral circulation provides new insights in human collateral artery growth.  J Am Coll Cardiol. 2008;  51 A278-A371
  • 35 Seiler C. The human coronary collateral circulation.  Heart. 2003;  89 1352-1357
  • 36 Seiler C, Fleisch M, Garachemani A, Meier B. Coronary collateral quantitation in patients with coronary artery disease using intravascular flow velocity or pressure measurements.  J Am Coll Cardiol. 1998;  32 1272
  • 37 Seiler C, Pohl T, Wustmann K. et al . Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease: a randomized, double-blind, placebo-controlled study.  Circulation. 2001;  104 2012-2017
  • 38 Shyy J YJ, Chien S. Role of Integrins in Endothelial Mechanosensing of Shear Stress.  Circ Res. 2002;  91 769-775
  • 39 Simons M, Annex B H, Laham R J. et al . Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial.  Circulation. 2002;  105 788-793
  • 40 Stabile E, Burnett M S, Watkins C. et al . Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice.  Circulation. 2003;  108 205-210
  • 41 Stabile E, Kinnaird T, la S ala A. et al . CD8+ T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4+ mononuclear cells through the expression of interleukin-16.  Circulation. 2006;  113 118-124
  • 42 van Royen N, Hoefer I, Bottinger M. et al . Local Monocyte Chemoattractant Protein-1 Therapy Increases Collateral Artery Formation in Apolipoprotein E-Deficient Mice but Induces Systemic Monocytic CD11b Expression, Neointimal Formation, and Plaque Progression.  Circ Res. 2003;  92 218-225
  • 43 van Royen N, Hoefer I, Buschmann I. et al . Exogenous application of transforming growth factor beta 1 stimulates arteriogenesis in the peripheral circulation.  FASEB J. 2002;  16 432-434
  • 44 van Royen N, Schirmer S H, Atasever B. et al . START Trial: a pilot study on STimulation of ARTeriogenesis using subcutaneous application of granulocyte-macrophage colony-stimulating factor as a new treatment for peripheral vascular disease.  Circulation. 2005;  112 1040-1046
  • 45 van Weel V, Toes R E, Seghers L. et al . Natural Killer Cells and CD4+ T-Cells Modulate Collateral Artery Development.  Arterioscler Thromb Vasc Biol. 2007;  27 2310-2318
  • 46 Vogel R, Zbinden R, Indermuhle A, Windecker S, Meier B, Seiler C. Collateral-flow measurements in humans by myocardial contrast echocardiography: validation of coronary pressure-derived collateral-flow assessment.  Eur Heart J. 2006;  27 157-165
  • 47 Yang H T, Laughlin M H, Terjung R L. Prior exercise training increases collateral-dependent blood flow in rats after acute femoral artery occlusion.  Am J Physiol Heart Circ Physiol. 2000;  279 H1890-1897
  • 48 Zbinden R, Zbinden S, Meier P. et al . Coronary collateral flow in response to endurance exercise training.  Eur J Cardiovasc Prev Rehabil. 2007;  14 250-257
  • 49 Zbinden S, Zbinden R, Meier P, Windecker S, Seiler C. Safety and efficacy of subcutaneous-only granulocyte-macrophage colony-stimulating factor for collateral growth promotion in patients with coronary artery disease.  J Am Coll Cardiol. 2005;  46 1636-1642
  • 50 Ziegelhoeffer T, Fernandez B, Kostin S. et al . Bone marrow-derived cells do not incorporate into the adult growing vasculature.  Circ Res. 2004;  94 230

Dr. Dr. med. Stephan H. Schirmer

Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes

Kirrberger Straße

66421 Homburg/Saar

Phone: 06841/16-21333

Fax: 06841/16-23434

Email: Stephan.Schirmer@uks.eu

    >