
Abstract
!

Capillary electrophoresis (CE) was introduced as a
new analytical technique in the 1970s and rapidly
proved to be a powerful tool for the separation
and detection of various classes of natural and
synthetic compounds. Since the availability of
commercially manufactured high-performance
instruments, CE represents an interesting alterna-
tive to high-pressure liquid chromatography
(HPLC), mainly because of its speed and high sep-
aration efficiency. In this overview a short de-
scription of the basic andwidely used CEmethods
will be given and the applicability of these meth-
ods for the analysis of natural products will be
discussed. Due to the growing number of publica-
tions dealing with CE or CE/MS of secondary plant
metabolites, an exhaustive overview of all current
applications cannot be given in this contribution.
Therefore, the focus of this mini-reviewwill be on
the advances and new aspects of recently pub-
lished CE methods in natural products analysis.

Abbreviations
!

ACN: acetonitrile
AcOH: acetic acid
CE: capillary electrophoresis
CD: cyclodextrin
CEC: capillary electrochromatography
CE/ESI‑MS: capillary electrophoresis–electro-

spray ionisation mass spectrometry
CZE: capillary zone electrophoresis
DMF: dimethyl formamide
EOF: electroosmotic flow
ESI: electrospray ionisation
FASI: field-amplified sample injection
FESS: field-enhanced sample stacking
IsoOH: isopropanol
MEKC: micellar electrokinetic chromatog-

raphy
MEEKC: microemulsion electrokinetic chro-

matography
MS; mass spectrometry
NACE: non-aqueous capillary electropho-

resis
MeOH: methanol
RM-MEKC: reversed-migration MEKC
THF: tetrahydrofuran
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Introduction
!

Capillary electrophoresis (CE) represents one of
the most attractive analytical techniques for the
rapid qualitative and quantitative analysis of mol-
ecules with a wide range of polarity and molecu-
lar weight, including small molecules such as
drugs but also macromolecules such as proteins
or nucleic acids. Because of its versatility and high
separation efficiency, CE is an interesting alterna-
tive to the widely used reversed-phase high-pres-
sure liquid chromatography (RP-HPLC) and has
gained much interest for the analysis of natural
products in herbal extracts, pharmaceutical for-
Unger M.
mulations, and food supplements. Since its intro-
duction in 1979 by Mikkers et al. [1] and in 1981
by Jorgenson and Lukacs [2,3], the popularity of
CE continuously increased so that high-perfor-
mance CE instruments became rapidly available.
Over the years the tremendous progress of this
fascinating separation technique has led to a great
variety of separation methods and applications
that have been outlined in recently published re-
views [4–9]. CE has been frequently applied espe-
cially for the qualitative and quantitative analysis
of secondary plant metabolites in crude plant ex-
tracts [10–12]. In the following, a short descrip-
tion of the basic and widely used CE methods
Capillary Electrophoresis of… Planta Med 2009; 75: 735–745
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(e.g., capillary zone electrophoresis [CZE], non-aqueous capillary
electrophoresis [NACE], micellar electrokinetic chromatography
[MEKC], microemulsion electrokinetic chromatography [MEEKC],
and capillary electrochromatography [CEC]) will be given, and
the applicability of these methods for the analysis of secondary
plant metabolites will be discussed.
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Capillary Zone Electrophoresis
!

In the absence of an electroosmotic flow (EOF), the migration ve-
locity vi of a charged molecule i in an electrical field is propor-
tional to the electrophoretic mobility µi and the electrical field
strength E (equation 1):

vi = µi · E

The electrophoretic mobility µi is dependent on the net charge
zi ·e0 and the friction coefficient 6 ·π · r ·η (equation 2):

�i ¼
zi � e0

6 � � � r � �

Whereas the net charge of a molecule is the result of its pKa value
and of the pH value of the electrolyte, the friction coefficient is
determined by its size (6 ·π · r) and the viscosity (η) of the running
buffer. As the size and shape of a molecule cannot be influenced,
the net charge of the analytes can be manipulated by the pH val-
ue of the buffer. Furthermore, if the pKa values of the analytes are
known, the net charge can be calculated via the dissociation rate
using the Henderson-Hasselbalch equation (equation 3):

pH ¼ pKa þ log
cðbaseÞ
cðacidÞ

Ideal candidates for CZE analyses of natural products are perma-
nently charged molecules such as anthocyans, quaternary alka-
loids, and sulphated flavonoids. For such molecules, the pH value
of the buffer can be varied over a wide range without loss of the
electrophoretic mobility, which is also particularly advantageous
for capillary electrophoresis−mass spectrometry (CE/MS). In-
deed, CE/MS analyses of anthocyans and quaternary alkaloids
have been published frequently [13–17]. If several permanently
charged molecules with similar molecular weights have to be an-
alysed, the permanent charge is a disadvantage because all mole-
cules exhibit a very similar mass-to-charge ratio. In this case the
selectivity can be tuned by organic solvents and counterions that
have a high affinity to the oppositely charged analytes [18].
Because many secondary plant metabolites (e.g., benzoic or cin-
namic acids, coumarins, flavonoids) possess phenolic hydroxy
groups, they can be analysedwith CZE using running buffers with
neutral to basic pH values in the range between 7 and 12. For ex-
ample, the three major curcuminoids curcumin, demethoxycur-
cumin, and bis-demethoxycurcumin from Curcuma domestica,
Curcuma longa, and Curcuma xanthorrhiza were fully separated
and quantified in less than 5min using a basic running buffer
consisting of 20mM phosphate, 50mM sodium hydroxide, and
14mM β-cyclodextrin (β-CD) [19]. Comparable to CEC, MEKC
and MEEKC, CE analyses with electrolytes containing cyclodex-
trins can also be considered electrokinetic chromatography. The
addition of β-CD enhanced the solubility of the curcuminoids and
influenced the selectivity because the different stability of the
curcuminoid−CD inclusion complexes individually influenced
the migration behaviour of the analytes. Curcuminoids with a
Unger M. Capillary Electrophoresis of… Planta Med 2009; 75: 735–745
high affinity to the β-CD molecules have a lower migration veloc-
ity to the anode than do curcuminoids that do not easily form in-
clusion complexes with β-CD. For some natural product classes
that are not acidic or basic (e.g., sugars, phenolic glycosides), a
charge can be created by complexation. Vicinal hydroxy groups
of neutral sugars or glycosides with a cis-configuration can form
complexes with borate anions, which leads to a migration of the
anionic complexes to the anode. In fused silica capillaries and at
neutral to basic pH values, the EOF carries the negatively charged
complexes to the cathode. In this case the selectivity of the sepa-
ration is determined by the stability, size, and molecular geome-
try of the analyte-borate complexes. This separation principle
was frequently applied for the analysis of neutral secondary plant
metabolites in the past [20,21]. For example, Honda et al. re-
ported the CZE analysis of reducing monosaccharides after de-
rivatisation to their corresponding N-2-pyridylglycamines [20].
The derivatised sugar molecules were separated as their borate
complexes using 200mM borate (pH 10.5) as running buffer. Al-
so, Schwaiger et al. separated aldoses and ketoses as their borate
complexes using 175mM borate (pH 10.5) as electrolyte [21]. In
order to enhance the UV absorption of the sugars, a reductive
amination with 4-aminobenzonitrile was performed.
Among the different classes of natural compounds analysed with
CZE are alkaloids [16,22–24], anthraquinones [25,26], an-
thocyans [27,28], carbohydrates [29], catechins [30], coumarins
[31,32], flavonoids [33–35], glucosinolates [36], phenolic acids
[37], proanthocyanidins [38], red wine pigments [39], saponins
[40], and xanthones [41]. Due to the variety of factors influencing
the separation selectivity and efficiency in CZE, an extensive dis-
cussion on method development strategies cannot be given in
this review. Thus, for a comprehensive overview about the opti-
misation of CZE methods for the analysis of natural products, re-
fer to the recently published review of Li et al. [42].
Non-Aqueous Capillary Electrophoresis
!

The first paper dealing with CE separations in a pure non-aque-
ous medium was written by Walbroehl and Jorgenson in 1984
[43]. Since then, non-aqueous buffer systems have been increas-
ingly applied for the separation of small molecules including sec-
ondary plant metabolites [44]. The separation media in non-
aqueous capillary electrophoresis (NACE) contain water-miscible
organic solvents such as acetonitrile (ACN), dimethyl formamide
(DMF), or various alcohols and acidic or basic solvents such as for-
mic acid, acetic acid (AcOH), ammonia, or diethylamine [45]. Be-
cause the low conductivity of these buffer media normally results
in lower currents compared with aqueous media, the electrolyte
concentration and the electrical field strength can be increased.
Another major advantage of non-aqueous media is the good sol-
ubility of less-polar compounds, for example, long-chained fatty
acids [46]. According to Porras and Kenndler, the often-cited se-
lectivity and efficiency improvements for CE analyses in non-
aqueous media are based on heteroconjugation and/or ion pair-
ing rather than on selective changes of the analyte mobilities or
pKa values [45]. As most buffer salts used for CE separations are
not fairly soluble in non-aqueous media, the use of electrolytes
in NACE is often restricted to ammonium acetate and ammonium
formate, which also allows the application of these buffer sys-
tems for CE/MS analyses. In fact, one major reason for the popu-
larity of non-aqueous running buffers is their applicability for CE/
MS [47]. The high amount of organic solvents in non-aqueous



Table 1 Selected examples for the analysis of secondary plant metabolites with NACE.

Natural product class Plant species Electrolyte Ref.

Alkaloids – 50mM ammonium acetate, 0.6M AcOH inMeOH−ACN (75 :25, v/v) [48]

Anthraquinones Xanthophytum attopvensis 50mM sodium cholate, 1.0% (v/v) AcOH, 40% (v/v) ACN in MeOH [51]

Coumarins Cortex Fraxini, Fraxinus spp. 60mMsodium cholate, 20mMammoniumacetate, 3.0% (v/v) AcOH, 20% (v/v)
ACN in MeOH

[52]

Flavones Chinese herbs 10mM sodium cholate, 80mM TRIS in ACN−MeOH (60 :40, v/v) [53]

Diterpenes Danshen (Salvia miltiorrhiza) 250mM ammonium acetate, 1.0% (v/v) AcOH, 30% (v/v) ACN inMeOH [55]

Hypericins and hyperforins St. Johnʼs wort
(Hypericum perforatum)

50mM ammonium acetate, 150mM sodium acetate, 0.002% (w/v) hexadi-
methrine bromide in MeOH−DMSO−N-methylformamide (3 :2 :1, v/v/v)

[57]
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buffers increases their volatility and strongly reduces the surface
tension of the droplets generated via electrospray ionisation
(ESI). Therefore, non-aqueous media often provide a higher sen-
sitivity and compatibility for CE/ESI‑MS compared with aqueous
electrolytes. Natural products analysed with NACE include alka-
loids [48–50], anthraquinones [51], coumarins [52], flavonoids
[53], polyphenolic compounds [54], terpenes [55,56], and hyper-
icins and hyperforins from Hypericum perforatum [57]. Addition-
al references are listed in the recently published reviews of Scriba
[47] and Geiser and Veuthey [58]. Selected examples for NACE
separations of natural products are given in l" Table 1.
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Electrokinetic Chromatography
!

Neutral substances without acidic or basic functional groups and
which cannot be transferred to charged complexes can be ana-
lysed with electrokinetic chromatography (EKC). In contrast to
CZE, electrokinetic separation techniques (e.g., micellar electro-
kinetic chromatography [MEKC], microemulsion electrokinetic
chromatography [MEEKC], and capillary electrochromatography
[CEC]) are based on the distribution of analytes between a sta-
tionary or pseudo-stationary phase and the mobile phase driven
by the EOF. In the following paragraphs the characteristics of
these methods and their potential for natural products analysis
will be explained.

Micellar electrokinetic chromatography
MEKC was introduced by Terabe and coworkers in 1984 [59] and
rapidly proved to be the method of choice for the CE analysis of
neutral compounds. In MEKC, a pseudo-stationary phase is gen-
erated by the addition of a micelle-forming ionic surfactant mol-
ecule such as sodium dodecyl sulphate (SDS) or cetyltrimethyl-
ammonium bromide. Above the critical micelle concentration,
the tenside molecules aggregate to micelles where the polar and
water-soluble “head” of the surfactant molecules constitutes the
outer surface and the hydrophobic part of the molecule forms a
lipophilic core. Whereas the selectivity of CZE separations is
based on different electrophoretic mobilities of the analyte ions,
the separation mechanism in MEKC is based on hydrophobic in-
teractions of the sample molecules with the applied pseudo-sta-
tionary phase and – if the analytes are charged at the pH value of
the buffer – different electrophoretic mobilities. In the case of
charged compounds, the overlap of the two separation mecha-
nisms (hydrophobic interaction and electrophoretic mobility)
can lead to a significant gain in selectivity; therefore, MEKC has
been frequently applied for challenging separations of natural
products in crude plant extracts and pharmaceutical formula-
tions [10–12]. Because crude plant extracts contain a variety of
acidic, basic, and neutral compounds, MEKC is of particular inter-
est for the simultaneous analysis of charged and uncharged sub-
stances in crude plant extracts (e.g., for fingerprint analyses) [10–
12,60]. For example, Ganzera et al. recently reported the success-
ful MEKC separation of phenolic acids and flavonoids from Arnica
montana [60]. Kaempferol 3-O-glucoside (1), 6-methoxy-kaemp-
ferol 3-O-glucoside (2), hispidulin (3), quercetin 3-O-glucoside
(4), patuletin 3-O-glucoside (5), quercetin 3-O-glucuronic acid
(6), chlorogenic acid (7), 3,5-dicaffeoylquinic acid (8), and 4,5-di-
caffeoylquinic acid (9) were separated using an electrolyte con-
sisting of 50mM borate (pH 6.75), 25mM SDS, and 30% (v/v)
ACN (l" Fig. 1) [60]. The crude plant extracts were hydrodynami-
cally injected (50mbar for 5 s) into the fused silica capillary
(62 cm × 50 µm i.d.), and the separation voltage and capillary
temperature were 25 kV and 40°C, respectively. As can be clearly
seen in l" Fig. 1, the analytes migrated in two distinct groups ac-
cording to their pKa values. At a pH value of 6.75, the dissociation
of hispidulin (3) and the flavonoid glycosides 1, 2, 4, and 5 is neg-
ligible, so that the migration velocity of these compounds is pre-
dominantly determined by their affinity to the pseudo-station-
ary phase (SDS) and the formation of complexes with borate
anions. For quercetin 3-O-glucuronic acid (6) and the phenolic
acids (7–9), however, the longer migration times are due to the
almost complete dissociation of their carboxylic groups. This de-
protonation leads to a strong electrophoretic mobility to the
anode but also to a reduced incorporation into the SDS micelles
because of repulsion forces and higher polarity.
In addition to the above-mentioned example, MEKC has been fre-
quently applied for the analysis of natural products, for example,
alkaloids [61–63], anthraquinones [64,65], cardiac glycosides
[66], catechins [67,68], coumarins [69], ecdysones [70], flavo-
noids [71–73], glucosinolates [74,75], isoflavones [76,77], pro-
cyanidins [78,79], saponins [80], and terpenes [81,82]. Examples
for MEKC separations of secondary plant metabolites are given in
l" Table 2.

Microemulsion electrokinetic chromatography
In recent years microemulsion electrokinetic chromatography
(MEEKC) has become an attractive alternative to previously es-
tablished CE methods such as CZE and particularly MEKC [83].
An important prerequisite for the performance of MEEKC analy-
ses with UV detection is the use of running buffers with optically
transparent emulsions containing oil droplets below 10 nm so
that light scattering does not occur. Such microemulsions are ob-
tained by dispersion of immiscible liquids in an aqueous buffer in
the presence of surfactants that decrease the surface tension be-
tween the two liquid layers. The addition of a short-chain alcohol
such as butanol (co-surfactant) further lowers the dropletʼs sur-
face tension. Whereas the oil phase typically consists of heptane
Unger M. Capillary Electrophoresis of… Planta Med 2009; 75: 735–745



Table 2 Selected examples for the analysis of natural products with MEKC.

Natural product class Plant species Electrolyte Ref.

Tropane alkaloids Hyoscyamus muticus 30mMphosphate−borate, 40mM SDS, 16.5% (v/v) ACN, pH 8.7 [63]

Anthraquinones Rhubarb (Rheum rhaponticum) 30mMphosphate, 20mM SDS, 20mM sodium cholate, 10mM β-CD, pH 10.4 [65]

Catechins Green tea (Camellia sinensis) 5mM borate, 60mMphosphate, 50mM SDS, pH 7.0 [67]

Ecdysteroids and flavonoids Serratula strangulata 15mMborate, 60mM SDS in 20% (v/v) methanol, pH 9.08 [70]

Flavonoids Ixeridium gracile 15mMborate, 30mM SDS in 10% (v/v) ethanol, pH 10.5 [71]

Flavonoids Astragalus membranaceus 20mMborate, 100mM sodium cholate in 25% (v/v) acetonitrile, pH 9.2 [73]

Isoflavones Medicago spp.,Melilotus alba 25mMborate, 60mM SDS, 1.6% (v/v) 1,2-hexanediol, pH 9.0 [76]

Flavonoids and terpene
lactones

Ginkgo biloba 20mMphosphoric acid, 40mM SDS, 12mM β-CD, pH 2.2 [82]

Fig. 1 MEKC separation of two Arnica montana
extracts under optimised CE conditions. For CE
conditions and peak assignment refer to the text.
(a) and (b) were tentatively identified as flavonoid
and caffeoylquinic acid, respectively. Reprinted
with permission from [60].
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or octane, the aqueous phase comprises borate, phosphate, or
TRIS buffers at basic pH values between 7 and 11; however,
MEEKC analyses at low buffer pH values also have been reported
[84,85]. Although most MEEKC applications use oil-in-water
emulsions, the use of reverse MEEKC with water-in-oil emulsions
is also possible and is particularly advantageous for the separa-
tion of highly hydrophobic compounds [86]. Comparable to
MEKC, enantioselective microemulsions that contain chiral sur-
factants or chiral alcohols allow the enantioseparation of analytes
in racemic mixtures. For example, Aiken and Huie described a
novel chiral microemulsion based on (2R,3R)-di-n-butyl tartrate
(0.5% w/w) as a water-immiscible chiral selector [87]. The addi-
tion of this chiral selector to the running buffer consisting of
0.6% (w/w) SDS and 1.2% (w/w) butanol in 15mM TRIS (pH 8.1)
allowed the enantiomeric separation of a racemic mixture of
ephedrine (selectivity factor: 2.6) [87]. Especially because of its
applicability for charged, neutral, and lipophilic compounds,
MEEKC is an interesting alternative for the analysis of secondary
plant metabolites complimentary to CEC, MEKC, and RP-HPLC
[83].
An impressive example of the MEEKC analysis of lipophilic and
medium polar plant constituents has been published by Vanhoe-
nacker et al., who separated the rather unstable hop ingredients
humulone, adhumulone, and cohumulone (α-acids) and lupu-
lone, adlupulone, and colupulone (β-acids) as well as the chal-
cone derivatives isoxanthohumol, 6-prenylnaringenin, and 8-
Unger M. Capillary Electrophoresis of… Planta Med 2009; 75: 735–745
prenylnaringenin [86]. The separation was obtained using a run-
ning buffer containing 10mM borate adjusted to a pH value of
9.7, 40mM SDS, 3% (v/v) butanol, and 0.3% (v/v) heptane. Injec-
tions were performed hydrodynamically for 3 s at 50mbar, and
between two runs the capillary was rinsed sequentially for
1.5min with 50mM borate and then with the separation buffer.
The temperature of the capillary was set to 25°C and the applied
separation voltage was 30 kV [86]. The pH value was an ex-
tremely important experimental condition, whereas an increase
in the SDS concentration or the replacement of butanol by penta-
nol did not significantly affect the separation. By using the above-
mentioned conditions, a baseline separation of the applied hop
constituents could be obtained, and it was also possible to detect
these compounds in hop extracts [86]. Other natural products
that have been analysed with MEEKC include anthraquinones
and bianthrones in rhubarb [88], catechins in green and black
tea [84,85], ephedrine alkaloids in Chinese herbs [89], sesquiter-
pene lactones of radix inulae (Inula helenium) [90], and xan-
thones from Securidaca inappendiculata [91]. The buffer systems
used for these MEEKC separations are given in l" Table 3.

Capillary electrochromatography
Capillary electrochromatography (CEC) can be addressed as a hy-
brid-technique that combines chromatography with capillary
electrophoresis. In CEC the mobile phase is normally driven
through the stationary phase by the EOF. In contrast to MEKC



Table 3 Selected examples for the analysis of secondary plant metabolites with MEEKC.

Natural product class Plant species Electrolyte Ref.

Anthraquinones Rhubarb
(Rheum rhaponticum)

97.7% (w/v) 10mM sodium borate (pH 9.2), 0.6% (w/v) SDS, 0.5% (w/v) dibutyl-L-
tartrate, 1.2% (w/v) butanol, 0–40% (w/v) ACN

[88]

Catechins Green tea
(Camellia sinensis)

86.61–94.13% (w/v) 50mMphosphate (pH 2.5), 2.31–3.32% (w/v) SDS, 1.36% (w/v)
heptane, 7.58–9.72% (w/v) co-surfactant

[84]

Ephedrine alkaloids Chinese herbs 20mMborate, 23.3mM SDS, 16.4mM heptane, 180.85mMbutanol in 8% ACN,
pH 9.4

[89]

Phenolic acids and catechins Black tea
(Camellia sinensis)

86.1% (v/v) 25mMphosphate (pH 2.0), 2.89% (w/v) SDS, 1.36% (w/v) heptane,
7.66% (w/v) cyclohexanol, 2% (w/v) ACN

[85]

Sesquiterpene lactones Radix Inulae
(Inula helenium)

85.8% (w/v) sodium tetraborate, 1.24% (w/v) SDS, 0.32% (v/v) hexane, 2.64% (v/v)
butanol, 10% (v/v) ACN, pH 9.2

[90]

Xanthones Securidaca inappendiculata 50mMborate, 120mM SDS, 80mM heptane, 10% (v/v) butanol, 5mM sulphated β-
CD, pH 9.5

[91]

Table 4 Selected examples for the analysis of secondary plant metabolites with CEC.

Substance class Stationary phase Mobile phase Ref.

Purine alkaloids Silica; 3 µm IsoOH, hexane, 1mM TRIS (pH 8.0) 52 :40 :8 [93]

Anthraquinones Hypersil C18; 3 µm 5mMAcOH−ACN 20:80 [94]

Boswellic acids Hypersil C18; 3 µm 20mM ammonium formate (pH 6.5), ACN 1:9 (v/v) [95]

Cannabinoids Hypersil C8/18; 3 µm ACN, 25mM phosphate (pH 2.57), 75 :25 [96]

Flavanones Lichrospher C18; 5 µm 2.5mM ammonium formate−ACN 80:20 [97]

Isoflavones Monolith 2.4mM ammonium formate (pH 2.7), ACN 70 :30 [98]

Plant sterols Hypersil C18; 3 µm ACN, THF, 25mM TRIS (pH 8.0) 60 :35 :5 [99]

Withanolides Hypersil C18; 3 µm 10mM ammonium acetate (pH 8.0), ACN 40:60 [100]
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and MEEKC, the analyses are performed in coated, packed, or
monolithic capillaries. There are three common types of station-
ary phases applied in CEC: (i) capillary columns with packed ho-
mogenous silica or reversed-phase silica particles with a diame-
ter of about 3 µm; (ii) capillaries coated with the stationary
phase; or (iii) monolithic capillary columns made by an in situ
polymerisation of suitable polymer materials inside the capillary.
Whereas for neutral compounds the separation mechanism is
primarily based on interactions of the analytes with the applied
stationary phase, charged compounds are separated because of
their electrophoretic mobility and their affinity to the stationary
phase. As for MEKC and MEEKC, this aspect is favourable for fin-
gerprint analyses of crude plant extracts and often reveals excel-
lent selectivities for complex separations. For themost often used
reversed-phase stationary phases in CEC, the mobile phase typi-
cally consists of a mixture of organic solvents with buffers (e.g.,
phosphate or borate) [92]. Comparable to NACE and MEEKC, the
use of mobile phases with high contents of organic solvents al-
lows the separation of lipophilic natural products (e.g., boswellic
acids, cannabinoids, or tocopherols) (l" Table 4). This aspect con-
tributed to the use of CEC and CEC/MS for the analytical charac-
terisation of plant extracts [92]. Because a detailed overview of
the application of CEC for the analysis of natural products was re-
cently given by Scherz et al. [92], single applications will not be
presented at this point. Instead, selected examples for the appli-
cation of CEC in natural products analysis and the corresponding
references are given in l" Table 4.
CE vs. HPLC in the Analysis of Natural Products
!

Although the performance of CE instruments and the handling of
the capillaries have been improved in recent years, there are still
some difficulties such as capillary conditioning, capillary clean-
ing, and blockage of the capillary due to particles or precipitation
of buffer components. Especially the cleaning procedures be-
tween runs have to be carefully evaluated and validated, because
they have a strong impact on the reproducibility of migration
times and peak areas in fused silica capillaries [101]. For example,
alkaloids tend to strongly adsorb to the capillary wall, which re-
sults in distorted peak shapes or sometimes a complete loss of
the signal [18]. Although the use of running buffers with ammo-
nium ions (e.g., ammonium acetate) reduces the adsorption of
basic analytes to the capillary wall, exact cleaning procedures
with water, sodium hydroxide, or even SDS [102] as well as a suf-
ficient re-equilibration with the electrolyte are essential for re-
producible results [101]. Because these cleaning procedures
often last several minutes, cleaning and re-equilibration of the
inner capillary surface often exceeds the analysis time. Whereas
reproducibility, handling, and robustness are major advantages
of conventional reversed-phase HPLC (RP-HPLC), the high separa-
tion efficiency and selectivity as well as short analysis times are
favourable attributes of CE. However, short analysis times and
high separation efficiencies were recently achieved for HPLC by
the introduction of short HPLC columns with small diameters
and particle sizes below 3 µm. This technical progress led to the
development of ultrahigh-pressure liquid chromatography,
which was recently reviewed by Wu and Clausen [103]. Perhaps
one of the most striking drawbacks of HPLC compared with CE is
the limited applicability of normal-phase and RP-HPLC methods
for the analysis of highly polar compounds such as phenolic
Unger M. Capillary Electrophoresis of… Planta Med 2009; 75: 735–745
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acids/glycosides, glucuronide and sulphate conjugates, purine
and pyrimidine bases, nucleotides, and water-soluble vitamins.
These polar compounds are normally not soluble in the non-
aqueous solvents used for normal-phase chromatography, and
they do not show a sufficient affinity to the most often applied
reversed-phase silica gel. Furthermore, the application of amino-
alkyl- or diol-based silica columns often does not provide repro-
ducible results or sufficient robustness. Although the introduc-
tion of hydrophilic interaction chromatography was an impor-
tant development for HPLC analysis of polar compounds with
acetonitrile-water mixtures containing varying contents of alco-
hols and electrolytes [104], the analysis of highly water-soluble
natural products with HPLC is still a challenge. For CE, however,
the analysis of polar substances can be easily done with various
methods (e.g., CZE, MEKC, or even NACE). For example, highly po-
lar calystegines could be easily determined both qualitatively and
quantitatively with CZE [105], whereas, in this case, the applica-
tion of RP-HPLC was not possible. Another example is the use of
CZE for the quantification of resveratrol in a food supplement in
the presence of acesulfame K, riboflavin, ascorbic acid, flava-
nones, and hydroxycinnamic acids [106]. By using a running buf-
fer consisting of 23mM borate (pH 10.0) with 7% (v/v) acetoni-
trile, a baseline separation of all components was obtained in on-
ly seven minutes.
Its limited robustness and sometimes difficult manageability has
hampered the establishment of CE, and especially CE/MS, in re-
search facilities and quality-control laboratories. But, as outlined
in the next section, the number of CE/MS applications has stead-
ily increased as the demand for rapid, efficient, and multidimen-
sional analytical methods increases.
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Capillary Electrophoresis-Mass Spectrometry
!

Since its introduction in 1987 by Olivares et al. [107], CE/MS has
evolved to a widely applicable, multidimensional analytical tech-
nique complementary to conventional LC/MS methods. One of
the major problems that had to be solved for the application of
CE/MS was the extremely small liquid flow inside the CE capil-
laries, which normally ranges from a few nanoliters to several
hundred nanoliters per minute. Because even the typical flow
rates of microscale LC/MS systems are in the low µL/min range,
the flow-out of the CE capillary has to be increased. For this pur-
pose, a so-called make-up flow (ca. 1–5 µL/min) is added to the
capillary flow via a simple tee (liquid junction) or as a coaxial
sheath liquid (sheath flow). Although other online interfaces (e.
g., sheathless, direct electrode) have been developed, nowadays
almost all CE/MS applications use the sheath-flow interface in-
troduced by Smith and coworkers in 1988 [108]. Whereas the
sheath-liquid reduces the sensitivity due to additional back-
ground noise and the additional solvent, this approach also al-
lows the post-column addition of chemicals in order to improve
ESI characteristics and ionisation efficiency. This is particularly
relevant if buffer additives with a low volatility or ion-pairing re-
agents must be used [109].
CE/MS analyses of natural products were first published in 1994
by Hsieh et al. for the qualitative analysis of the protoberberine
alkaloids berberine and palmatine [110] and again in 1994 by
Henion et al. for the quantitative determination of isoquinoline
alkaloids in the bark of Phellodendron wilsonii [111]. Both groups
used tandem MS and a sheath-flow interface instead of a liquid-
junction interface to obtain a stable electrospray. In 1997, a gen-
Unger M. Capillary Electrophoresis of… Planta Med 2009; 75: 735–745
erally applicable buffer system for the CZE and CE/MS analysis of
various alkaloid classes was developed by Unger et al. [16]. A 1:1
mixture of 100mM ammonium acetate, adjusted to pH 3.1, and
acetonitrile allowed the CZE separation of monoterpenoid indole
alkaloids, isoquinoline alkaloids, β-carboline, and opium alka-
loids. By reducing the ammonium acetate concentration to
80mM and adjusting the pH value to 4.0 before the solution was
mixed with acetonitrile, the electrolyte was also suitable for the
CE/MS analysis of the aforementioned alkaloid classes in crude
extracts from opium and the cortex of Aspidosperma quebracho-
blanco and from root and cell suspension cultures of Rauwolfia
serpentina [112,113]. Isoquinoline alkaloids were also analysed
by Sturm et al., who applied a running buffer consisting of ammo-
nium formate (70 or 100mM), adjusted to pH 3.0 or 4.0, and
methanol or acetonitrile as buffer additives [17]. By using a
sheathflow (5mM formic acid in acetonitrile) at a flow rate of
3 µL/min and ESI in the positive mode, they obtained [M]+ ions
in the case of quaternary isoquinoline alkaloids such as berberine
or sanguinarine and [M + H]+ ions for the tertiary amines (e.g.,
chelidonine). This method was successfully applied for the ana-
lytical characterisation of the alkaloid pattern in crude metha-
nolic extracts of Berberis vulgaris, Chelidonium majus, Eschschol-
zia californica, Jateorhiza palmata, and Hydrastis canadensis [17].
Approximately 10 years later again Stuppner and coworkers ap-
plied CE/MS for the analysis of isoquinoline alkaloids [114]. In
this case NACE and ion-trap tandem MS with a sheath-flow ESI
interface was used for the analysis of isoquinoline alkaloids in
central European Corydalis species. The non-aqueous electrolyte
used for the NACE/ESI-/MS analysis was a mixture of 50mM am-
monium acetate, 1M acetic acid, and 10% (v/v) methanol in ace-
tonitrile [114]. Among the alkaloid classes also analysed with CE/
MS are glycoalkaloids from Solanum tuberosum [115], naphthyli-
soquinoline alkaloids from a Central African Ancistrocladus spe-
cies [116], quinolizidine alkaloids from Sophora flavescens [117],
and tropane alkaloids from Atropa belladonna [118].
Naturally, the application of CE/MS is not restricted to alkaloids.
Since 1997 almost all classes of natural products have been ana-
lysed with CE coupled to various types of MS instruments [6,8,
15,36,92,119,120]. Both ion-trap and time-of-flight (TOF) MS
have been applied for the CE/MS analysis of intact glucosinolates
in Arabidopsis thaliana [36]. Due to the very low and almost iden-
tical pKa values of the permanently charged sulphate groups of
the intact glucosinolates, CZE analysis of these compounds at a
pH value near the pKa values of the analytes – which normally
provides the optimum selectivity – was not possible. Further-
more, because glucosinolates form relatively stable ion pairs with
ammonium ions, thereby reducing the sensitivity for MS detec-
tion, the use of ammonium acetate or formate for the running
buffer and sheath liquid was avoided. By using 1M and 0.2% (m/
v) formic acid as electrolyte and sheath liquid, respectively, the
glucosinolates could be successfully identified with CE/MS in
crude extracts without interference from ubiquitous acidic plant
constituents such as benzoic or cinnamic acids, which possess
much higher pKa values and thus are not negatively charged
under the applied conditions. The intact glucosinolates, however,
maintained their electrophoretic mobility even under the acidic
conditions of the applied electrolyte (1M formic acid) and mi-
grated as anions, which are easily detectable with ESI in the neg-
ative-ion mode [36]. In l" Fig. 2, the CE/ESI‑TOF‑MS base peak
electropherogram of the glucosinolate pattern of a crude Arabi-
dopsis thaliana extract is shown. The application of CE/TOF‑MS fi-
nally allowed the assignment of glucosinolates that could not be



Fig. 2 Base peak electropherogram as obtained by CE/ESI‑TOF‑MS of a
crude Arabidopsis thaliana seed extract. The insert shows a detailed view of
extracted ion electropherograms (m/z values) of the major compounds.
Reprinted with permission from [36].
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identified with ion-trap MS. However, as stated by the authors,
even with TOF‑MS it was not possible to unequivocally identify
all peaks according to their elemental composition because of
overlapping isotopic patterns of co-eluting compounds [36].
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CE/MS vs. LC/MS in the Analysis of Natural Products
!

A direct comparison of the applicability of CE/MS and LC/MS for
the analysis of natural products was published by Vanhoenacker
et al., who analysed phenolic compounds in diethyl ether extracts
of red wines [120]. For these analyses both CE/MS and LC/MS
were performed with ESI in the negative-ion mode. Despite the
higher separation efficiency of CE compared with HPLC, the ap-
plication of LC/MS in this case was superior because better selec-
tivity and sensitivity were obtained. Moreover, by applying a sin-
gle-quadrupole mass spectrometer, 23 red wine constituents
could be identified using LC/MS, whereas only 13 ingredients
could be identified with CE/MS. Interestingly, the application of
a more volatile ammonium acetate buffer (25mM, pH 9.5) in-
stead of an ammonium borate buffer (18.75mM, pH 9.3) during
CE/MS did not result in better sensitivity or improved peak iden-
tification. The sensitivity was increased for the catechins and the
phenolic acids, but the separation and the signal intensities of the
flavonols decreased [120]. Themain reason for this result was the
significant loss in separation selectivity when borate was re-
placed by acetate. Obviously, the complexation of aromatic or
cis-configured vicinal hydroxy groups by borate anions was the
key to the successful separation of the flavonols. This complexa-
tion also influenced the ionisation behaviour and fragmentation
of the phenolic compounds, because the red wine constituents
with a vicinal hydroxy group preferentially showed cluster ions
with borate or borate and methanol from the sheath liquid
[120]. However, it should be mentioned that for CE/MS analyses
the application of single-quadrupole mass spectrometers is par-
ticularly unfavourable for fingerprint analyses of natural prod-
ucts because these instruments show a relatively low sensitivity
in scan mode. That is why most of the CE/MS analyses of crude
plant extracts have been performedwith ion-trapMS, which pro-
vides a much higher sensitivity in scan mode.
Online Pre-Concentration Methods
!

Whereas in CE very low absolute sample amounts, typically in
the low picogram range, are detected, the low injection volumes
and the narrow diameter of the capillaries typically used (25–
100 µm) lead to a poor concentration sensitivity for the most
often applied UV detection. For molecules with average extinc-
tion coefficients, such as flavones, the limit of detection often lies
between 1 and 10 µg/mL. Even for CE coupled to MS, the concen-
tration sensitivity is only somewhat higher compared with CE
with UV detection because the sheath liquid necessary to obtain
a stable nanospray dilutes the sample and causes additional back-
ground noise [109]. To overcome the low concentration sensitiv-
ity of CE analyses, several strategies are currently applied. These
strategies involve the use of capillaries with extended detection
path lengths (e.g., Z-shaped, multi-reflection, bubble cell) or the
application of highly sensitive detectionmethods such as electro-
chemical or fluorometric detection. The combination of an ex-
tended detection path length with laser-induced fluorescence
(LIF) was reported recently for the sensitive detection of ribofla-
vin and other aromatic compounds [121]. Because the laser in-
tensity had to be decreased when bubble cells were used, the
sensitivity for riboflavin, for example, was only 8 times higher
compared with conventional UV detection [121]. Nevertheless,
the use of LIF detectors generally results in a significant increase
in sensitivity if the target analytes possess a fluorophoric struc-
ture. Although one major drawback is the limited availability of
excitation and emission wavelengths for LIF detectors, this tech-
nique has been applied several times in the past for the CE analy-
sis of natural products [122–124]. Comparable to catechol-
amines, many flavonoids can be electrochemically detected with
high sensitivity because the catechol structures of, e.g., quercetin
or luteolin can be easily oxidised to ortho-quinones. Thus, elec-
trochemical detection was preferentially applied for the CE anal-
ysis of flavonoids [125,126].
An alternative strategy to the use of extended detection path
lengths or more sensitive detection methods is the application
of online pre-concentration methods such as stacking or sweep-
ing. For a comprehensive overview of these methods, refer to the
excellent review of Simpson et al. [127]. Originally applied for
charged compounds in CZE applications, online pre-concentra-
tion techniques are nowadays also widely used for the MEKC or
MEEKC analysis of natural products [128,129]. During online
pre-concentration a relatively large sample amount is introduced
into the CE capillary with hydrodynamic or electrokinetic injec-
tion, and the target analytes are focused in a narrow band before
the separation begins. The focusing of sample molecules most
often results from (i) a different field strength in the sample zone
and running buffer (e.g., stacking, field-enhanced sample stack-
ing, FESS); (ii) a change in the effective charge of the analyte
(e.g., dynamic pH junction); or (iii) the partitioning of the sample
molecules in a pseudo-stationary phase such as SDS (sweeping).
Unger M. Capillary Electrophoresis of… Planta Med 2009; 75: 735–745
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The application of these online pre-concentration techniques
provides a 10- to 1000-fold enhancement in concentration sensi-
tivity, or even higher if large sample amounts can be introduced
into the capillary [127]. The first application of a simple and effec-
tive online pre-concentration method for the CE analysis of natu-
ral products in crude plant extracts was published by Unger and
Stöckigt in 1997 [130]. They used field-amplified sample injec-
tion (FASI) for the determination of alkaloids in crude methanolic
extracts from the roots of Berberis vulgaris and Hydrastis cana-
densis. By introducing a short plug of methanol 70% (v/v) before
electrokinetic injection of the alkaloids at 16 kV for 8 s, the con-
centration sensitivity was 1000 times higher compared with hy-
drodynamic injection at 345mbar for 1 s [130].
The online enrichment of charged substances with FASI is not
limited to CZE separations and can be combined with other CE
separation methods such as MEEKC. The combination of FASI
with MEEKC was used by Yu et al. to analyse trace amounts of
the quinolizidine alkaloids sophoridine, matrine, oxymatrine,
oxysophocarpine, and cytisine in the roots of Sophora flavescens
[129]. In this case the obtained LODs (defined as signal-to-noise
ratio = 3) for the analytes were as low as 0.1 ng/mL, which is ap-
proximately 10000 times higher compared with conventional
hydrodynamic injection.
Among the various online pre-concentration methods, FESS, FA-
SI, dynamic pH junction, and sweeping can be considered the
most useful techniques for the analysis of trace amounts of natu-
ral products in crude plant extracts, pharmaceutical formula-
tions, and even body fluids such as urine or plasma [127]. For ex-
ample, a combination of electrokinetic injection, dynamic pH
junction, and sweeping was used for the sensitive determination
of sinapic, ferulic, coumarinic, caffeic, syringic, vanillic, and 4-hy-
droxybenzoic acid in crude acetone extracts from Majorana hor-
tensis [131]. The sample was dissolved in a basic borate buffer
(50mM, pH 9.5), and both the junction electrolyte and the run-
ning buffer (mobilisation electrolyte) consisted of 50mM phos-
phate, pH 2.5. The latter also contained 60mM SDS because the
mobilisation and separation of the organic acids were done by re-
versed-migration MEKC (RM-MEKC). In RM-MEKC the running
buffer is adjusted to a low pH value (< 2.5) where virtually no
EOF is present or the EOF is suppressed by coating the capillaries
[132]. Therefore, the micelles with the partially included analytes
migrate to the oppositely charged electrode without being swept
by the EOF. For online pre-concentration, the phenolic acids were
electrokinetically injected (− 10 kV, 30min) from the alkaline
sample buffer (pH 9.5) into the junction electrolyte (pH 2.5); at
this point the phenolic acids were neutralised and stacked (accu-
mulation part). After accumulation of the phenolic acids, the
sample solution (inlet vial) was replaced by the running buffer
(50mM phosphate, 60mM SDS, pH 2.5) and the separation volt-
age (− 10 kV) was applied. The negatively charged SDS micelles of
the inlet vial migrated to the anode and penetrated the junction
electrolyte, where the neutralised phenolic acids were stacked
due to the loss in electrophoretic mobility at the acidic pH value
of 2.5. Because of their higher lipophilicity, the neutralised phe-
nolic acids were efficiently incorporated into the SDS micelles
and swept to the anode. The obtained LODs between 0.4 and
4.2 ng/mL mainly resulted from the long duration used for elec-
trokinetic injection (30min) and the stacking process during the
accumulation of the negatively charged phenolic acids in the
acidic junction electrolyte [131]. However, it can be speculated
that the application of a permanently or dynamically coated
capillary and a simple electrokinetic injection or FASI at relatively
Unger M. Capillary Electrophoresis of… Planta Med 2009; 75: 735–745
high electrical field strengths may have provided similar results
regarding sensitivity enhancement and separation efficiency.
Sweeping was originally developed for the online concentration
of neutral analytes in MEKC [133]. In this online concentration
technique, neutral or charged analytes are picked up and accu-
mulated in micelles of a pseudo-stationary phase that penetrates
the sample zone. Because the analytes are incorporated into the
micelles, lipophilic molecules are more efficiently concentrated
than hydrophilic substances. Also, in order to obtain a strong in-
corporation of the analytes into the pseudo-stationary phase,
buffer additives such as cyclodextrins or organic solvents should
be avoided in the sample matrix. In recent years, sweeping has
been applied several times for the online pre-concentration of
natural products, e.g., alkaloids [134], catechins [135], flavonoids
[128], and phenolic acids [136]. By introducing a large sample
amount into the capillary via hydrodynamic or electrokinetic in-
jection, sweeping can lead to a dramatic increase in sensitivity
(> 1000-fold) [127,133]. For example, a 1500-fold improvement
in detection sensitivity was obtained by a sweeping technique
applied for the MEKC analysis of trans-resveratrol in red wine
[137].
Future Perspectives and Concluding Remarks
!

The ongoing technical advances and future developments in all
fields of instrumental analytics will lead to further miniaturisa-
tion and improvement of CE instruments. Such improvements
may soon lead to the routine CE analysis of very small absolute
sample amounts in the low femtogram range. This sensitivity
may be achieved by a combination of various online pre-concen-
tration techniques with highly sensitive detection methods, such
as fluorometry or electrochemiluminescence [138].
Because the interest in nanoscale separation techniques is high
and still growing, CEwill be themethod of choice for future appli-
cations in all areas of bioanalytical research. Due to the wide-
spread use of a great variety of medicinal plants for the produc-
tion of herbal supplements and phytomedical products, one of
the future challenges in natural products analysis will be the de-
tection and exact quantification of trace amounts of species-spe-
cific constituents (marker compounds) for the unambiguous
identification of authentic plant material. Furthermore, CE will
be an important tool for the detection and quantification of trace
amounts of harmful plant constituents or impurities from toxic
plants, for example, aristolochic acids or colchicine. In this regard,
it can be speculated that the future application of CE in natural
products analysis is directly linked to the availability of robust
and highly sensitive detection methods.
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