Int J Sports Med 2009; 30(7): 538-544
DOI: 10.1055/s-0029-1202349
Orthopedics & Biomechanics

© Georg Thieme Verlag KG Stuttgart · New York

MMG-EMG Cross Spectrum and Muscle Fiber Type

T. W. Beck 1 , T. Housh 2 , A. C. Fry 3 , J. T. Cramer 1 , J. Weir 4 , B. Schilling 5 , M. Falvo 6 , C. Moore 5
  • 1Department of Health and Exercise Science, University of Oklahoma, Norman, United States
  • 2Department of Nutrition and Health Sciences, Lincoln, Nebraska, United States
  • 3Department of Health, Sport & Exercise Sciences, The University of Kansas, Lawrence, United States
  • 4Osteopathic Medical Center, Des Moines University, Des Moines, United States
  • 5Department of Health and Sports Sciences, University of Memphis, Memphis, United States
  • 6Program in Physical Therapy, Washington University in St. Louis, St. Louis, United States
Further Information

Publication History

accepted after revision December 31, 2008

Publication Date:
20 April 2009 (online)

Abstract

The purpose of this study was to investigate fiber type-related differences in the patterns of responses for mechanomyographic-electromyographic (MMG-EMG) cross spectrum mean power frequency (MPF) in resistance-trained and aerobically-trained subjects during a fatiguing muscle action. Five resistance-trained and five aerobically-trained men performed a 45-s isometric muscle action of the dominant leg extensors at 50% MVC while MMG and EMG signals were recorded simultaneously from the vastus lateralis muscle. In addition, a biopsy was taken to determine the myosin heavy chain (MHC) isoform content of the vastus lateralis. The resistance-trained and aerobically-trained subjects demonstrated similar patterns of responses for MMG-EMG cross spectrum MPF during the sustained muscle action. The vastus lateralis of the resistance-trained subjects demonstrated primarily Type II MHC isoform expression, indicative of fast-twitch muscle fibers, while that of the aerobically-trained subjects was composed mostly of Type I MHC isoform expression, indicative of slow-twitch fibers. Thus, the differences in fiber type characteristics were not manifested in the patterns of responses for MMG-EMG cross spectrum MPF.

References

  • 1 Bar A, Pette D. Three fast myosin heavy chains in adult rat skeletal muscle.  FEBS Lett. 1988;  235 153-155
  • 2 Beck TW, Housh TJ, Fry AC, Weir JP, Cramer JT, Schilling BK, Falvo MJ, Moore CA. The influence of muscle fiber type composition on the patterns of responses for electromyographic and mechanomyographic amplitude and mean power frequency during a fatiguing submaximal isometric muscle action.  Electromyogr Clin Neurophysiol. 2007;  47 221-232
  • 3 Beck TW, Housh TJ, Fry AC, Cramer JT, Weir JP, Schilling BK, Falvo MJ, Moore CA. The influence of myosin heavy chain isoform composition and training status on the patterns of responses for mechanomyographic amplitude versus isometric torque.  J Strength Cond Res. 2008;  22 818-825
  • 4 Beck TW, Housh TJ, Johnson GO, Cramer JT, Weir JP, Coburn JW, Malek MH. Does the frequency content of the surface mechanomyographic signal reflect motor unit firing rates? A brief review.  J Electromyogr Kinesiol. 2007;  17 1-13
  • 5 Bellamare F, Woods JJ, Johansson R, Bigland-Ritchie B. Motor unit discharge rates in maximal voluntary contractions of three human muscles.  J Neurophysiol. 1983;  50 1380-1392
  • 6 Bergström J. Muscle electrolytes in man.  Scand J Clin Lab Invest. 1962;  14 ((Suppl. 68)) 1
  • 7 Bichler E, Celichowski J. Mechanomyographic signals generated during unfused tetani of single motor units in the rat medial gastrocnemius muscle.  Eur J Appl Physiol. 2001;  85 513-520
  • 8 Bigland-Ritchie B, Johansson R, Lippold OCJ, Smith S, Woods JJ. Changes in motoneurone firing rates during sustained maximal voluntary contractions.  J Physiol. 1983;  340 335-346
  • 9 Bigland-Ritchie B, Woods JJ. Changes in muscle contractile properties and neural control during human muscular fatigue.  Muscle Nerve. 1984;  7 691-699
  • 10 Carraro U, Catani C. A sensitive SDS-PAGE method separating myosin heavy chain isoforms of rat skeletal muscles reveals the heterogeneous nature of the embryonic myosin.  Biochem Biophys Res Comm. 1983;  116 793-802
  • 11 Clamann HP. Activity of single motor units during isometric tension.  Neurology. 1970;  20 254-260
  • 12 Cramer JT, Housh TJ, Johnson GO, Ebersole KT, Perry SR, Bull AJ. Mechanomyographic and electromyographic responses of the superficial muscles of the quadriceps femoris during maximal, concentric isokinetic muscle actions.  Isokin Exerc Sci. 2000;  8 109-117
  • 13 Cramer JT, Housh TJ, Weir JP, Ebersole KT, Perry-Rana SR, Bull AJ, Johnson GO. Cross-correlation analyses of mechanomyographic signals from the superficial quadriceps femoris muscles during concentric and eccentric isokinetic muscle actions.  Electromyogr Clin Neurophysiol. 2003;  43 293-300
  • 14 Cramer JT, Housh TJ, Weir JP, Johnson GO, Ebersole KT, Perry SR, Bull AJ. Power output, mechanomyographic, and electromyographic responses to maximal, concentric, isokinetic muscle actions in men and women.  J Strength Cond Res. 2002;  16 399-408
  • 15 Diemont B, Figini MM, Orizio C, Perini R, Veicsteinas A. Spectral analysis of muscular sound at low and high contraction level.  Int J Biomed Comput. 1988;  23 161-175
  • 16 Evans WJ, Pinney SD, Young VR. Suction applied to a muscle biopsy maximizes sample size.  Med Sci Sports Exerc. 1982;  14 101-102
  • 17 Farina D, Negro F. Estimation of muscle fiber conduction velocity with a spectral multidip approach.  IEEE Trans Biomed Eng. 2007;  54 1583-1589
  • 18 Fry AC, Allemeier CA, Staron RS. Correlation between percentage fiber type area and myosin heavy chain content in human skeletal muscle.  Eur J Appl Physiol. 1994;  68 246-251
  • 19 Hägg GM. Interpretation of EMG spectral alterations and alteration indexes at sustained contraction.  J Appl Physiol. 1992;  73 1211-1217
  • 20 Hannerz J. Discharge properties of motor units in relation to recruitment order in voluntary contraction.  Acta Physiol Scand. 1974;  91 374-385
  • 21 Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hägg G. SENIAM European Recommendations for Surface ElectroMyoGraphy: Results of the SENIAM Project. Enschede: Roessingh Research and Development 1999
  • 22 Kranz H, Williams AM, Cassell J, Caddy DJ, Silberstein RB. Factors determining the frequency content of the electromyogram.  J Appl Physiol. 1983;  55 392-399
  • 23 Kupa EJ, Roy SH, Kandarian SC, De Luca CJ. Effects of muscle fiber type and size on EMG median frequency and conduction velocity.  J Appl Physiol. 1995;  79 23-32
  • 24 Kwatny E, Thomas DH, Kwatny HG. An application of signal processing techniques to the study of myoelectric signals.  IEEE Trans Biomed Eng. 1970;  17 303-312
  • 25 Leon-Garcia A. Probability and Random Processes for Electrical Engineering, second ed. Reading: Addison-Wesley Publishing Company 1994
  • 26 Marchetti M, Felici F, Bernardi M, Minasi P, Di Filippo L. Can evoked phonomyography be used to recognize fast and slow twitch muscle in man?.  Int J Sports Med. 1992;  13 65-68
  • 27 Mealing D, Long G, MacCarthy PW. Vibromyographic recording from human muscles with known fibre composition differences.  Br J Sports Med. 1996;  30 27-31
  • 28 Orizio C. Soundmyogram and EMG cross-spectrum during exhausting isometric contractions in humans.  J Electromyogr Kinesiol. 1992;  2 141-149
  • 29 Orizio C, Veicsteinas A. Soundmyogram analysis during sustained maximal voluntary contraction in sprinters and long distance runners.  Int J Sports Med. 1992;  13 594-599
  • 30 Pedhazur EJ. Multiple regression in behavioral research: explanation and prediction, third ed. Fort Worth: Harcourt Brace College Publishers 1997: 520-521
  • 31 Perrie WT, Bumford SJ. Electrophoretic separation of myosin isoenzymes. Implications for the histochemical demonstration of fiber types in biopsy specimens of human skeletal muscle.  J Neurol Sci. 1986;  73 89-96
  • 32 Ramírez N, Lugo G, Medina V. Two EEG derived parameters for the measurement of the effects caused by propofol on sedation. Proceedings of the 19th International Conference – IEEE/EMBS Oct. 30 – Nov. 2. 1997;  1207-1210
  • 33 Staron RS. Correlation between myofibrillar ATPase activity and myosin heavy chain composition in single human muscle fibers.  Histochemistry. 1991;  96 21-24
  • 34 Staron RS, Hikida RS. Histochemical, biochemical, and ultrastructural analyses of single human muscle fibers with special reference to the C fiber population.  J Histochem Cytochem. 1992;  40 563-568
  • 35 Staron RS, Malicky ES, Leonardi MJ, Falkei JE, Hagerman FC, Dudley GA. Muscle hypertrophy and fast fiber type conversions in heavy resistance trained women.  Eur J Appl Physiol. 1990;  60 71-79
  • 36 Staron RS, Johnson P. Myosin polymorphism and differential expression in adult human skeletal muscle.  Comp Biochem Physiol. 1993;  106B 463-475
  • 37 Wang S, Aziz TZ, Stein JF, Bain PG, Liu X. Physiological and harmonic components in neural and muscular coherence in Parkinsonian tremor.  Clin Neurophysiol. 2006;  117 1487-1498
  • 38 Yoshitake Y, Moritani T. The muscle sound properties of different muscle fiber types during voluntary and electrically induced contractions.  J Electromyogr Kinesiol. 1999;  9 209-217

Correspondence

Dr. T. W.Beck 

Department of Health and Exercise Science

University of Oklahoma

Huston Huffman Center

73019-6081 Norman

United States

Phone: +405/325 13 78

Fax: +405/325 05 94

Email: tbeck@ou.edu

    >