D. J. WALLACE,* K. R. CAMPOS,* C. S. SCHULTZ,* A. KLAPARS, D. ZEWGE, B. R. CRUMP, B. D. PHENIX, J. C. MCWILLIAMS, S. KRSKA, Y. SUN, C.-Y. CHEN, F. SPINDLER (MERCK RESEARCH LABORATORIES, RAHWAY, USA AND SOLVIAS AG, BASEL, SWITZERLAND) New Efficient Asymmetric Synthesis of Taranabant, a CB1R Inverse Agonist for the Treatment of Obesity Org. Process Res. Dev. 2009, 13, 84-90.

Synthesis of Taranabant

Significance: Taranabant is a potential selective inverse agonist of the cannabinoid-1 receptor which is implicated in the regulation of feeding behaviour. Hence, taranabant is being developed for the treatment of obesity. The synthesis depicted incorporates three key features: (1) a simple highly stereoselective synthesis of the vinyl tosylate ($\bf A \rightarrow \bf B$); (2) an efficient synthesis of a tetrasubstituted enamide by palladium-catalyzed amidation ($\bf B \rightarrow \bf D$); and (3) a highly efficient asymmetric hydrogenation to create two adjacent stereogenic centers in a single step ($\bf E \rightarrow \bf G$).

Comment: An earlier synthesis based on dynamic kinetic resolution (C.-y. Chen et al. *Org. Process Res. Dev.* **2007**, *11*, 616) required the use of sodium azide to introduce the nitrogen atom and suffered from lack of any suitable solid intermediates. In the present synthesis, the direct asymmetric hydrogenation of enamide $\bf D$ to taranabant was precluded because the nitrile in $\bf D$ coordinated preferentially to the rhodium catalyst. Therefore a two-step detour (nitrile hydrolysis, $\bf D \rightarrow \bf E$) and amide dehydration of $\bf G$ was required.

SYNFACTS Contributors: Philip Kocienski Synfacts 2009, 6, 0583-0583 Published online: 25.05.2009 **DOI:** 10.1055/s-0029-1216679; **Reg-No.:** K05809SF Category

Synthesis of Natural Products and Potential Drugs

Key words

taranabant

asymmetric hydrogenation

amidation

palladium

rhodium

