Synlett 2009(17): 2769-2772  
DOI: 10.1055/s-0029-1217986
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of 2,2′,6-Trisubstituted and 2,2′,6,6′-Tetrasubstituted Diaryl Sulfides and Diaryl Sulfones by Copper-Promoted Coupling and/or Ortholithiation

Jonathan Clayden*, James Senior
School of Chemistry, University of Manchester, Oxford Rd., Manchester M13 9PL, UK
Fax: +44(161)2754612; e-Mail: clayden@man.ac.uk;
Further Information

Publication History

Received 15 June 2009
Publication Date:
24 September 2009 (online)

Abstract

Stoichiometric copper(I) iodide, in the presence of potassium carbonate and ethylene glycol, promotes the coupling of even highly sterically encumbered 2,6-disubstituted thiophenols and aryl iodides to form hindered diarylsulfides. Hindered diarylsulfones may be made in a complementary fashion by ortholithiation of the sulfone oxidation products of less hindered diarylsulfides.

    References and Notes

  • For examples of atropisomerism and discussions on the conformational properties of non-biaryl systems, see:
  • 1a Clayden J. Turner H. Helliwell M. Moir E. J. Org. Chem.  2008,  73:  4415 
  • 1b Adler T. Bonjoch J. Clayden J. Font-Bardía M. Pickworth M. Solans X. Solé D. Vallverdú L. Org. Biomol. Chem.  2005,  3:  3173 
  • 1c Clayden J. Worrall CP. Moran W. Helliwell M. Angew. Chem. Int. Ed.  2008,  47:  3234 
  • 1d Betson MS. Clayden J. Worrall CP. Peace S. Angew. Chem. Int. Ed.  2006,  45:  5803 
  • 1e Clayden J. Fletcher SP. McDouall JJW. Rowbottom SJM. J. Am. Chem. Soc.  2009,  131:  5331 
  • 1f For an overview of this area, see: Clayden J. Chem. Commun.  2004,  127 
  • For studies of conformational interconversions in diarylsulfides and sulfones, see:
  • 2a Kessler H. Rieker A. Rundel W. Chem. Commun.  1968,  475 
  • 2b Lam WY. Martin JC. J. Org. Chem.  1981,  46:  4458 
  • 2c Grilli S. Lunazzi L. Mazzanti A. J. Org. Chem.  2001,  4444 
  • 2d Lunazzi L. Mazzanti A. Minzoni M. Tetrahedron  2005,  61:  6782 
  • 2e

    Clayden J., Senior J., Helliwell M.; Angew. Chem. Int. Ed.; in press

  • 3 Kwong FY. Buchwald SL. Org. Lett.  2002,  4:  3517 
  • Other recent methods for C-S bond formation in less hindered systems have been described, see:
  • 4a Fernandez-Rodriguez M.-A. Shen O. Hartwig JF. J. Am. Chem. Soc.  2006,  128:  2180 
  • 4b Correa A. Carril M. Bolm C. Angew. Chem. Int. Ed.  2008,  47:  2880 
  • 4c Zhang H. Cao W. Ma D. Synth. Commun.  2007,  37:  25 
  • 4d Xu HJ. Zhao XY. Deng J. Fu Y. Feng Y.-S. Tetrahedron Lett.  2009,  50:  434 
  • 4e Lee J.-Y. Lee PH. J. Org. Chem.  2008,  73:  7413 
  • 4f For a review, see: Kondo T. Mitsudo T. Chem. Rev.  2000,  100:  3205 
  • For further representative examples, see:
  • 4g Palomo C. Oiarbide M. López R. Gómez-Bengoa E. Tetrahedron Lett.  2000,  41:  1283 
  • 4h Herradura PS. Pendola KA. Guy RK. Org. Lett.  2000,  2:  2019 
  • 4i McWilliams JC. Fleitz FJ. Zheng N. Armstrong JD. Org. Synth.  2002,  79:  43 
  • 4j Li GY. Angew. Chem. Int. Ed.  2001,  40:  1513 
  • 4k Li GY. J. Org. Chem.  2002,  67:  3643 
  • 4l Schopfer U. Schlapbach A. Tetrahedron  2001,  57:  3069 
  • 4m Bates CG. Gujadhur RK. Venkataraman D. Org. Lett.  2002,  4:  2803 
  • 4n Only one previous report, a coupling method employing HMPA as solvent, addresses a 2,2′,6,6′-tetraalkyl diarylsulfide, see: Fujihara H. Chiu J. Furukawa N. J. Am. Chem. Soc.  1988,  110:  1280 
  • For recent reviews of directed lithiation, see:
  • 5a Clayden J. Organolithiums: Selectivity for Synthesis   Pergamon; Oxford: 2002. 
  • 5b Clayden J. Directed Metallation of Aromatic Compounds. In Chemistry of Organolithium Compounds   Vol. 1:  Rappoport Z. Marek I. Wiley; Chichester: 2004.  p.495 
  • 5c Whisler MC. MacNeil S. Snieckus V. Beak P. Angew. Chem. Int. Ed.  2004,  43:  2206 
  • 6 Clayden J. Cooney JJA. Julia M. J. Chem. Soc., Perkin Trans. 1  1995,  7 
  • 7 Iwao M. Iihama T. Mahalanabis KK. Perrier H. Snieckus V. J. Org. Chem.  1989,  54:  24 
  • 8 Krizan TD. Martin JC. J. Am. Chem. Soc.  1983,  105:  6155 
  • 9 Betson MS. Clayden J. Synlett  2006,  745 
  • 10 Pinchart A. Dallaire C. Van Bierbeek A. Gingras M. Tetrahedron Lett.  1999,  5479 
  • 11 Kimura S. Bill E. Bothe E. Weyhermller T. Wieghardt K. J. Am. Chem. Soc.  2001,  123:  6025 
  • 12 Stavber S. Kralj P. Zupan M. Synthesis  2002,  1513 
  • 13 For examples of selectivity of I over Br in related reactions, see: Deng W. Zou Y. Wang Y.-F. Liu L. Guo Q.-X. Synlett  2004,  1254 
14

Copper-Promoted Coupling; Typical Procedure for (2,4-Di-tert-butyl-6-bromophenyl)-(2,4-di-tert-butyl-6-methylphenyl)
sulfane (20b) Thiophenol 18a (574 mg), copper(I) iodide (462 mg) and potassium carbonate (560 mg) were charged to a flask fitted with a reflux condenser, which was evacuated/back-filled with nitrogen (×3). A solution of iodide 19c (800 mg) and ethylene glycol (0.23 mL) in tert-amyl alcohol (6 mL) was added via syringe and the reaction mixture was heated to reflux for 24 h. The reaction mixture was allowed to cool to r.t., diluted with ethyl acetate (40 mL) and filtered through a glass sinter. The filtrate was washed with water (3 × 50 mL) and brine (50 mL), dried over MgSO4 and the solvents were removed under reduced pressure. The crude product was purified by flash chromatography (petroleum ether) to yield the title compound as a white solid that was recrystallised from acetone (1.27 g, 76%); mp 125-129 ˚C(acetone); R f = 0.69 (petroleum ether); ¹H NMR (400 MHz, CDCl3): δ = 7.45 (d, J = 2 Hz, 1 H, ArH), 7.36 (d, J = 2 Hz, 1 H, ArH), 7.33 (d, J = 2 Hz, 1 H, ArH), 6.93 (d, J = 2 Hz, 1 H, ArH), 1.75 (s, 3 H, ArCH 3 ), 1.65 (s, 9 H, CMe3), 1.64 (s, 9 H, CMe3), 1.30 (s, 9 H, CMe3), 1.28 (s, 9 H, CMe3); ¹³C NMR (100 MHz, CDCl3): δ = 150.8, 150.2, 149.0, 148.5, 139.0, 133.1, 131.8, 129.7, 127.0, 126.1, 123.6, 122.5, 38.3, 37.5, 34.7, 34.5, 31.3, 31.3, 31.1, 30.9, 23.0; MS (CI): m/z (%) = 502 (40) [79Br M]+, 504 (40) [Br M]+, 503 (50) [79BrM + H]+, 505 (50) [BrM + H]+; HRMS: m/z calcd for C29H43BrS: 502.2263; found: 502.2264.