nitriles

T. OISHI, K. YAMAGUCHI, N. MIZUNO* (THE UNIVERSITY OF TOKYO AND SCIENCE AND TECHNOLOGY AGENCY, SAITAMA, JAPAN)

Catalytic Oxidative Synthesis of Nitriles Directly from Primary Alcohols and Ammonia Angew. Chem. Int. Ed. 2009, 48, 6286-6288.

Synthesis of Nitriles from Primary Alcohols and NH₃ with Ru(OH)_x/Al₂O₃

Ru(OH)_x/Al₂O₃ (10 mol% Ru) THF. 120-130 °C air (6 atm), 3-16 h

from 1: 13 examples (65-96% yield) from 2: 7 examples (71-93% yield)

R-CN

CN

3a (from **1a**: 120 °C, 3 h, 96% yield) (from **2a**: 120 °C, 3 h, 93% yield)

3b (from 1b: 120 °C, 5 h, 72% yield)

CN

3c (from 1c: 120 °C, 5 h, 80% yield)

CN

3d (from 1d: 120 °C, 5 h, 85% yield)

3e (from **1e**: 120 °C, 5 h, 83% yield) (from **2e**: 120 °C, 5 h, 85% yield)

3f (from **1f**: 120 °C, 5 h, 92% yield) (from **2f**: 120 °C, 5 h, 90% yield)

.CN

3g (from 1g: 120 °C, 6 h, 82% yield)

3h (from **1h**: 120 °C, 5 h, 82% yield) (from **2h**: 120 °C, 5 h, 82% yield)

3i (from 1i: 120 °C, 5 h, 76% yield)

3j (from 1j: 120 °C, 7 h, 80% yield)

3k (from 1k: 120 °C, 7 h, 67% yield)

3I (from **1I**: 120 °C, 6 h, 81% yield) (from **2I**: 120 °C, 6 h, 76% yield)

3m (from 1m: 130 °C, 12 h, 65% yield)

3n (from 2n: 130 °C, 16 h, 71% yield)

3o (from 2o: 130 °C, 16 h, 81% yield)

Significance: An Al₂O₃-supported ruthenium hydroxide catalyst (Ru(OH)_x/Al₂O₃) promoted the reaction of primary alcohols 1 or aldehydes 2 with ammonia to give the corresponding nitriles 3 in 65-96% yield (from 1, 13 examples; from 2, 7 examples). No leaching of ruthenium was observed by ICP-AES analysis after the reaction.

Comment: The authors have previously reported the preparation and characterization of Ru(OH)_x/ Al₂O₃ and its application to the aerobic oxidative dehydrogenation of alcohols (Angew. Chem. Int. Ed. 2002, 41, 4538; Chem. Eur. J. 2003, 9, 4353). The catalytic activity of Ru(OH)_x/Al₂O₃ was superior to that of the other supported catalysts for the formation of **3a** from **1a** $[Au(OH)_x/Al_2O_3: 10\%,$ $Pd(OH)_x/Al_2O_3$: <1%, $Pt(OH)_x/Al_2O_3$: <1%, Rh(OH)_x/Al₂O₃: <1%, Ru/C: 22%, RuHAP: 4%].

SYNFACTS Contributors: Yasuhiro Uozumi, Go Hamasaka Synfacts 2009, 11, 1287-1287 Published online: 22.10.2009

DOI: 10.1055/s-0029-1218067; Reg-No.: Y11609SF