Synlett 2010(1): 128-130  
DOI: 10.1055/s-0029-1218547
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

The Domino Oxa-Michael-Aldol-Reaction Reinvestigated: A New P-Based Organocatalyst for Xanthenone Scaffolds

Sefer Aya, Emilie M. C. Gérarda, Min Shi*b, Stefan Bräse*a
a Institute for Organic Chemistry, University of Karlsruhe (TH) and Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
Fax: +49(721)608858; e-Mail: braese@kit.edu;
b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, P. R. of China
Fax: +86(21)64166128; e-Mail: Mshi@mail.sioc.ac.cn.;
Further Information

Publication History

Received 8 September 2009
Publication Date:
09 December 2009 (online)

Abstract

The oxa-Michael-aldol condensation reaction offers a fast access to xanthenone scaffolds, which are an important structural motif in natural products. This reaction was investigated and a new organocatalyst based on phosphine was discovered (PhPMe2). After optimization of the reaction conditions, the Michael donors and acceptors were screened to determine the scope and limitations of this reaction. Furthermore, important observations were made, allowing the formulation of a surprising reaction pathway for this catalyst system.

    References

  • 1a Tietze LF. Brasche G. Gericke KM. In Domino Reactions in Organic Synthesis   Wiley-VCH; Weinheim: 2006. 
  • 1b Tietze LF. Chem. Rev.  1996,  96:  115 
  • 1c Tietze LF. Beifuss U. Angew. Chem., Int. Ed. Engl.  1993,  32:  131 ; Angew. Chem. 1993, 105, 137
  • 2a Nicolaou KC. Edmonds DJ. Bulger PG. Angew. Chem. Int. Ed.  2006,  45:  7134 ; Angew. Chem. 2006, 118, 7292
  • 2b Tietze LF. Rackelmann N. Pure Appl. Chem.  2004,  76:  1967 
  • 3a Lesch B. Bräse S. Angew. Chem. Int. Ed.  2004,  43:  115 ; Angew. Chem. 2004, 116, 118
  • 3b Ohnemüller UK. Nising CF. Nieger M. Bräse S. Eur. J. Org. Chem.  2006,  1535 
  • 3c Nising CF. Bräse S. Chem. Soc. Rev.  2008,  37:  1218 
  • 4 Nising CF. Ohnemüller UK. Friedrich A. Lesch B. Steiner J. Schnöckel H. Nieger M. Bräse S. Chem. Eur. J.  2006,  12:  3647 
  • 5a Stoll A. Renz J. Brack A. Helv. Chim. Acta  1952,  35:  2022 
  • 5b Franck B. Gottschalk EM. Ohnsorge U. Baumann G. Angew. Chem., Int. Ed. Engl.  1964,  3:  441 ; Angew. Chem. 1964, 76, 438
  • 5c Franck B. Gottschalk EM. Ohnsorge U. Hüper F. Chem. Ber.  1966,  99:  3842 
  • 5d Steyn PS. Tetrahedron  1970,  26:  51 
  • 5e Andersen R. Büchi G. Kobbe B. Demain AL. J. Org. Chem.  1977,  42:  352 
  • 5f Elsässer B. Krohn K. Flörke U. Root N. Aust H.-J. Draeger S. Schulz B. Antus S. Kurtán T. Eur. J. Org. Chem.  2005,  4563 
  • 5g For a review, see: Bräse S. Encinas A. Keck J. Nising CF. Chem. Rev.  2009,  109:  3903 
  • 6 Nising CF. Ohnemüller UK. Bräse S. Angew. Chem. Int. Ed.  2006,  45:  307 ; Angew. Chem. 2006, 118, 313
  • 7 Gérard EMC. Bräse S. Chem. Eur. J.  2008,  14:  8086 
  • 8 Rios R. Sundén H. Ibrahem I. Córdova A. Tetrahedron Lett.  2007,  48:  2181 
  • 9 Li H. Wang J. E-Nunu T. Zu L. Jiang W. Wei S. Wang W. Chem. Commun.  2007,  507 
  • This reagent was already successfully used in other reactions:
  • 10a Ciganek E. In Organic Reactions   Vol. 51:  Paquette LA. Wiley-VCH; Weinheim: 1997. 
  • 10b Shi M. Zhao G.-L. Adv. Synth. Catal.  2004,  346:  1205 
  • 10c Shi Y.-L. Shi M. Synlett  2005,  2623 
  • 10d Shi M. Li C.-Q. Tetrahedron: Asymmetry  2005,  16:  1385 
  • 10e Qi M.-J. Shi M. Tetrahedron  2007,  63:  10415 
  • 11 Lee KY. Kim JM. Kim JN. Bull. Korean Chem. Soc.  2003,  24:  17 
  • 12 Nising CF. Ohnemüller UK. Bräse S. Synthesis  2006,  2643 
  • 13 The difficulty of isolating Baylis-Hillman intermediates, especially using PhPMe2, was also reported in: Zhu X.-F. Henry CE. Kwon O. J. Am. Chem. Soc.  2007,  129:  6722