Semin Musculoskelet Radiol 2009; 13(2): 120-133
DOI: 10.1055/s-0029-1220883
© Thieme Medical Publishers

Whole-Body Imaging of Bone Marrow

Gerwin P. Schmidt1 , Maximilian F. Reiser1 , Andrea Baur-Melnyk1
  • 1Department of Clinical Radiology, LMU Ludwig Maximilian University of Munich–Grosshadern Campus, Munich, Germany
Further Information

Publication History

Publication Date:
19 May 2009 (online)

ABSTRACT

For bone marrow screening, multimodality algorithms including conventional radiographs, bone scintigraphy, multislice computed tomography CT (MS-CT) scan, and dedicated magnetic resonance imaging (MRI) are widely established in clinical routine. Although radiographs are used as a basic imaging procedure for clarification of suspected focal bone pathologies, low sensitivity has been reported for the detection of limited osteolytic bone marrow destruction. Therefore, skeletal scintigraphy often is used as a more sensitive and integrated method in patients with suspected malignant bone marrow disease. MS-CT scan is the method of choice in the assessment of bone stability and allows for evaluation of fracture risk. Hybrid imaging concepts, such as positron emission tomography-computed tomography (PET-CT) scan, have been established as an effective tool for the detection of skeletal metastases, using the additional metabolic information of a PET scan for the assessment of tumor viability and therapy response.

MRI is an imaging technique that allows direct visualization of bone marrow components with high spatial resolution. The unique soft-tissue contrast of MRI enables precise assessment of bone marrow infiltration before osteolytic changes become visible in MS-CT or metabolic changes occur in bone scintigraphy or a PET scan. Furthermore it can depict tumor expansion into adjacent paraosseous structures, such as the spinal canal. The development of multichannel whole-body MRI (WB-MRI) systems has enabled bone marrow screening without use of ionizing radiation at high diagnostic accuracy. Parallel imaging techniques in combination with global matrix coil concepts, as well as the introduction of high-field whole-body scanners, have substantially reduced acquisition times without compromises in spatial resolution. WB-MRI has successfully been applied for screening of bone metastases and hematologic bone marrow diseases, like multiple myeloma, lymphoma, and histiocytosis X. Furthermore, it has recently been proposed for the assessment of primarily benign bone diseases predisposing for malignancy (e.g., multiple cartilaginous exostoses). This article provides an overview of state-of-art whole-body imaging of the bone marrow and highlights present and potential future applications, especially in the field of WB-MRI.

REFERENCES

  • 1 Coleman R E. Clinical features of metastatic bone disease and risk of skeletal morbidity.  Clin Cancer Res. 2006;  12 6243s-6249s
  • 2 Rosenthal D I. Radiologic diagnosis of bone metastases.  Cancer. 1997;  80(8 suppl) 1595-1607
  • 3 Ghanem N, Uhl M, Brink I et al.. Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone.  Eur J Radiol. 2005;  55(1) 41-55
  • 4 Nakamoto Y, Osman M, Wahl R L. Prevalence and patterns of bone metastases detected with positron emission tomography using F-18 FDG.  Clin Nucl Med. 2003;  28(4) 302-307
  • 5 Schmidt G P, Wintersperger B, Graser A, Baur-Melnyk A, Reiser M F, Schoenberg S O. High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study.  Invest Radiol. 2007;  42(6) 449-459
  • 6 Fochem K, Ogris E. Early recognition of bone metastases (comparative study between bone scintigraphy and x-ray examination [in German].  Acta Med Austriaca. 1976;  3(5) 170-176
  • 7 Baur-Melnyk A, Reiser M. Staging of multiple myeloma with MRI: comparison to MSCT and conventional radiography [in German].  Radiologe. 2004;  44(9) 874-881
  • 8 Roberts J G, Gravelle I H, Baum M, Bligh A S, Leach K G, Hughes L E. Evaluation of radiography and isotopic scintigraphy for detecting skeletal metastases in breast cancer.  Lancet. 1976;  1(7953) 237-239
  • 9 Ketiku K K, Azodo M V. Detection of skeletal metastases in Nigerian breast cancer patients: evaluation of radioisotope bone scan and radiography.  West Afr J Med. 1996;  15(2) 81-84
  • 10 Chassang M, Grimaud A, Cucchi J M et al.. Can low-dose computed tomographic scan of the spine replace conventional radiography? An evaluation based on imaging myelomas, bone metastases, and fractures from osteoporosis.  Clin Imaging. 2007;  31(4) 225-227
  • 11 Horger M, Claussen C D, Bross-Bach U et al.. Whole-body low-dose multidetector row-CT in the diagnosis of multiple myeloma: an alternative to conventional radiography.  Eur J Radiol. 2005;  54(2) 289-297
  • 12 Krahe T, Nicolas V, Ring S, Warmuth-Metz M, Köster O. Diagnostic evaluation of full x-ray pictures and computed tomography of bone tumors of the spine [in German].  Rofo. 1989;  150(1) 13-19
  • 13 Lecouvet F E, Malghem J, Michaux L et al.. Skeletal survey in advanced multiple myeloma: radiographic versus MR imaging survey.  Br J Haematol. 1999;  106(1) 35-39
  • 14 Shie P, Cardarelli R, Brandon D, Erdman W, Abdulrahim N. Meta-analysis: comparison of F-18 fluorodeoxyglucose-positron emission tomography and bone scintigraphy in the detection of bone metastases in patients with breast cancer.  Clin Nucl Med. 2008;  33(2) 97-101
  • 15 Prior J O, Barghouth G, Delaloye J F, Leyvraz S, Bischof Delaloye A. The value of bone marrow scintigraphy using 99mTc monoclonal antigranulocyte antibodies in complement to bone scintigraphy in detecting bone metastases from primary breast cancer.  Nucl Med Commun. 2003;  24(1) 29-36
  • 16 Frat A, Ağildere M, Gençoğlu A et al.. Value of whole-body turbo short tau inversion recovery magnetic resonance imaging with panoramic table for detecting bone metastases: comparison with 99MTc-methylene diphosphonate scintigraphy.  J Comput Assist Tomogr. 2006;  30(1) 151-156
  • 17 Mentzel H J, Kentouche K, Sauner D et al.. Comparison of whole-body STIR-MRI and 99mTc-methylene-diphosphonate scintigraphy in children with suspected multifocal bone lesions.  Eur Radiol. 2004;  14(12) 2297-2302
  • 18 Bristow A R, Agrawal A, Evans A J et al.. Can computerised tomography replace bone scintigraphy in detecting bone metastases from breast cancer? A prospective study.  Breast. 2008;  17(1) 98-103
  • 19 Poitout D, Gaujoux G, Lempidakis M et al.. X-ray computed tomography or MRI in the assessment of bone tumor extension [in French].  Chirurgie. 1991;  117(5-6) 488-490
  • 20 Mulkens T H, Bellinck P, Baeyaert M et al.. Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation.  Radiology. 2005;  237(1) 213-223
  • 21 Chow E, Holden L, Rubenstein J et al.. Computed tomography (CT) evaluation of breast cancer patients with osteolytic bone metastases undergoing palliative radiotherapy—a feasibility study.  Radiother Oncol. 2004;  70(3) 291-294
  • 22 Lauenstein T C, Freudenberg L S, Goehde S C et al.. Whole-body MRI using a rolling table platform for the detection of bone metastases.  Eur Radiol. 2002;  12(8) 2091-2099
  • 23 Lauenstein T C, Goehde S C, Herborn C U et al.. Whole-body MR imaging: evaluation of patients for metastases.  Radiology. 2004;  233(1) 139-148
  • 24 Zenge M O, Ladd M E, Vogt F M, Brauck K, Barkhausen J, Quick H H. Whole-body magnetic resonance imaging featuring moving table continuous data acquisition with high-precision position feedback.  Magn Reson Med. 2005;  54(3) 707-711
  • 25 Brauck K, Zenge M O, Vogt F M et al.. Feasibility of whole-body MR with T2- and T1-weighted real-time steady-state free precession sequences during continuous table movement to depict metastases.  Radiology. 2008;  246(3) 910-916
  • 26 Ito S, Kato K, Ikeda M et al.. Comparison of 18F-FDG PET and bone scintigraphy in detection of bone metastases of thyroid cancer.  J Nucl Med. 2007;  48(6) 889-895
  • 27 Fogelman I, Cook G, Israel O, Van der Wall H. Positron emission tomography and bone metastases.  Semin Nucl Med. 2005;  35(2) 135-142
  • 28 Pelosi E, Messa C, Sironi S et al.. Value of integrated PET/CT for lesion localisation in cancer patients: a comparative study.  Eur J Nucl Med Mol Imaging. 2004;  31(7) 932-939
  • 29 Lardinois D, Weder W, Hany T F et al.. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography.  N Engl J Med. 2003;  348(25) 2500-2507
  • 30 Cohade C, Osman M, Leal J, Wahl R L. Direct comparison of (18)F-FDG PET and PET/CT in patients with colorectal carcinoma.  J Nucl Med. 2003;  44(11) 1797-1803
  • 31 Reske S N, Kotzerke J. FDG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, “Onko-PET III,” 21 July and 19 September 2000.  Eur J Nucl Med. 2001;  28(11) 1707-1723
  • 32 Grant F D, Fahey F H, Packard A B, Davis R T, Alavi A, Treves S T. Skeletal PET with 18F-fluoride: applying new technology to an old tracer.  J Nucl Med. 2008;  49(1) 68-78
  • 33 Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT.  J Nucl Med. 2006;  47(2) 287-297
  • 34 Schaner E G, Chang A E, Doppman J L, Conkle D M, Flye M W, Rosenberg S A. Comparison of computed and conventional whole lung tomography in detecting pulmonary nodules: a prospective radiologic-pathologic study.  AJR Am J Roentgenol. 1978;  131(1) 51-54
  • 35 Franzius C, Schulte M, Hillmann A et al.. Clinical value of positron emission tomography (PET) in the diagnosis of bone and soft tissue tumors. 3rd interdisciplinary Consensus Conference “PET in Oncology”: results of the Bone and Soft Tissue Study Group [in German].  Chirurg. 2001;  72(9) 1071-1077
  • 36 Bastiaannet E, Groen H, Jager P L et al.. The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis.  Cancer Treat Rev. 2004;  30(1) 83-101
  • 37 Franzius C, Daldrup-Link H E, Wagner-Bohn A et al.. FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging.  Ann Oncol. 2002;  13(1) 157-160
  • 38 Iagaru A, Quon A, McDougall I R, Gambhir S S. F-18 FDG PET/CT evaluation of osseous and soft tissue sarcomas.  Clin Nucl Med. 2006;  31(12) 754-760
  • 39 Strobel K, Exner U E, Stumpe K D, Hany T F, Bode B, Mende K. The additional value of CT images interpretation in the differential diagnosis of benign vs. malignant primary bone lesions with 18F-FDG-PET/CT.  Eur J Nucl Med Mol Imaging. 2008;  35(11) 2000-2008
  • 40 Krishnamurthy G T, Tubis M, Hiss J, Blahd W H. Distribution pattern of metastatic bone disease. A need for total body skeletal image.  JAMA. 1977;  237(23) 2504-2506
  • 41 Eustace S, Tello R, DeCarvalho V et al.. A comparison of whole-body turbo STIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases.  AJR Am J Roentgenol. 1997;  169(6) 1655-1661
  • 42 Engelhard K, Hollenbach H P, Wohlfart K, von Imhoff E, Fellner F A. Comparison of whole-body MRI with automatic moving table technique and bone scintigraphy for screening for bone metastases in patients with breast cancer.  Eur Radiol. 2004;  14(1) 99-105
  • 43 Mehta R C, Marks M P, Hinks R S, Glover G H, Enzmann D R. MR evaluation of vertebral metastases: T1-weighted, short-inversion-time inversion recovery, fast spin-echo, and inversion-recovery fast spin-echo sequences.  AJNR Am J Neuroradiol. 1995;  16(2) 281-288
  • 44 Mahnken A H, Wildberger J E, Adam G et al.. Is there a need for contrast-enhanced T1-weighted MRI of the spine after inconspicuous short τ inversion recovery imaging?.  Eur Radiol. 2005;  15(7) 1387-1392
  • 45 Walker R, Kessar P, Blanchard R et al.. Turbo STIR magnetic resonance imaging as a whole-body screening tool for metastases in patients with breast carcinoma: preliminary clinical experience.  J Magn Reson Imaging. 2000;  11(4) 343-350
  • 46 Vanel D, Dromain C, Tardivon A. MRI of bone marrow disorders.  Eur Radiol. 2000;  10(2) 224-229
  • 47 Schmidt G P, Schoenberg S O, Schmid R et al.. Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT.  Eur Radiol. 2007;  17(4) 939-949
  • 48 Fogelman I, Cook G, Israel O, Van der Wall H. Positron emission tomography and bone metastases.  Semin Nucl Med. 2005;  35(2) 135-142
  • 49 Steinborn M M, Heuck A F, Tiling R, Bruegel M, Gauger L, Reiser M F. Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system.  J Comput Assist Tomogr. 1999;  23(1) 123-129
  • 50 Cook G J, Houston S, Rubens R, Maisey M N, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions.  J Clin Oncol. 1998;  16(10) 3375-3379
  • 51 Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Loidl W. Detection of bone metastases in patients with prostate cancer by F-18 fluorocholine and F-18 fluoride PET-CT: a comparative study.  Eur J Nucl Med Mol Imaging. 2008;  , May 15 (Epub ahead of print)
  • 52 Israel O, Goldberg A, Nachtigal A et al.. FDG-PET and CT patterns of bone metastases and their relationship to previously administered anti-cancer therapy.  Eur J Nucl Med Mol Imaging. 2006;  33(11) 1280-1284
  • 53 Durie B GM, Salmon S E. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival.  Cancer. 1975;  36(3) 842-854
  • 54 Lecouvet F E, Malghem J, Michaux L et al.. Skeletal survey in advanced multiple myeloma: radiographic versus MR imaging survey.  Br J Haematol. 1999;  106(1) 35-39
  • 55 Stäbler A, Baur A, Bartl R, Munker R, Lamerz R, Reiser M F. Contrast enhancement and quantitative signal analysis in MR imaging of multiple myeloma: assessment of focal and diffuse growth patterns in marrow correlated with biopsies and survival rates.  AJR Am J Roentgenol. 1996;  167(4) 1029-1036
  • 56 Baur A, Stäbler A, Bartl R, Lamerz R, Scheidler J, Reiser M. MRI gadolinium enhancement of bone marrow: age-related changes in normals and in diffuse neoplastic infiltration.  Skeletal Radiol. 1997;  26(7) 414-418
  • 57 Ghanem N, Lohrmann C, Engelhardt M et al.. Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey.  Eur Radiol. 2006;  16(5) 1005-1014
  • 58 Baur-Melnyk A, Buhmann S, Becker C et al.. Whole-body MRI versus whole-body MDCT for staging of multiple myeloma.  AJR Am J Roentgenol. 2008;  190(4) 1097-1104
  • 59 Nanni C, Zamagni E, Farsad M et al.. Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results.  Eur J Nucl Med Mol Imaging. 2006;  33(5) 525-531
  • 60 Fonti R, Salvatore B, Quarantelli M et al.. 18F-FDG PET/CT, 99mTc-MIBI, and MRI in evaluation of patients with multiple myeloma.  J Nucl Med. 2008;  49(2) 195-200
  • 61 Erten N, Saka B, Berberoglu K et al.. Technetium-99m 2-methoxy-isobutyl-isonitrile uptake scintigraphy in detection of the bone marrow infiltration in multiple myeloma: correlation with MRI and other prognostic factors.  Ann Hematol. 2007;  86(11) 805-813
  • 62 Baur A, Stäbler A, Nagel D et al.. Magnetic resonance imaging as a supplement for the clinical staging system of Durie and Salmon?.  Cancer. 2002;  95(6) 1334-1345
  • 63 Dürr H R, Müller P E, Hiller E et al.. Malignant lymphoma of bone.  Arch Orthop Trauma Surg. 2002;  122(1) 10-16
  • 64 Iizuka-Mikami M, Nagai K, Yoshida K et al.. Detection of bone marrow and extramedullary involvement in patients with non-Hodgkin's lymphoma by whole-body MRI: comparison with bone and 67Ga scintigraphies.  Eur Radiol. 2004;  14(6) 1074-1081
  • 65 Kellenberger C J, Miller S F, Khan M, Gilday D L, Weitzman S, Babyn P S. Initial experience with FSE STIR whole-body MR imaging for staging lymphoma in children.  Eur Radiol. 2004;  14(10) 1829-1841
  • 66 Ribrag V, Vanel D, Leboulleux S et al.. Prospective study of bone marrow infiltration in aggressive lymphoma by three independent methods: whole-body MRI, PET/CT and bone marrow biopsy.  Eur J Radiol. 2008;  66(2) 325-331
  • 67 Goo H W, Yang D H, Ra Y S et al.. Whole-body MRI of Langerhans cell histiocytosis: comparison with radiography and bone scintigraphy.  Pediatr Radiol. 2006;  36(10) 1019-1031
  • 68 Steinborn M, Wörtler K, Nathrath M, Schöniger M, Hahn H, Rummeny E J. Whole-body MRI in children with Langerhans cell histiocytosis for the evaluation of the skeletal system [in German].  Rofo. 2008;  180(7) 646-653
  • 69 Kumar J, Seith A, Kumar A et al.. Whole-body MR imaging with the use of parallel imaging for detection of skeletal metastases in pediatric patients with small-cell neoplasms: comparison with skeletal scintigraphy and FDG PET/CT.  Pediatr Radiol. 2008;  38(9) 953-962
  • 70 Goo H W, Choi S H, Ghim T, Moon H N, Seo J J. Whole-body MRI of paediatric malignant tumours: comparison with conventional oncological imaging methods.  Pediatr Radiol. 2005;  35(8) 766-773
  • 71 Mentzel H J, Kentouche K, Sauner D et al.. Comparison of whole-body STIR-MRI and 99mTc-methylene-diphosphonate scintigraphy in children with suspected multifocal bone lesions.  Eur Radiol. 2004;  14(12) 2297-2302

Gerwin P SchmidtM.D. 

Department of Clinical Radiology, LMU Ludwig Maximilian University of Munich–Grosshadern Campus

Marchioninistr. 15, 81377 Munich, Germany

Email: gerwin.schmidt@med.uni-muenchen.de

    >