Horm Metab Res 2009; 41(10): 730-735
DOI: 10.1055/s-0029-1225360
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Regulation of Glucose-6-Phosphatase Gene Expression by Insulin and Metformin

C. Mues1 [*] , J. Zhou2 [*] , K. N. Manolopoulos3 , P. Korsten4 , D. Schmoll5 , L.-O. Klotz6 , S. R. Bornstein7 , H. H. Klein1 , A. Barthel7 , 8
  • 1Medizinische Klinik I, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr-Universität, Bochum, Germany
  • 2Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
  • 3Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital Oxfort, Oxford, UK
  • 4Zentrum Innere Medizin, Abteilung Nephrologie und Rheumatologie, Universität Göttingen, Göttingen, Germany
  • 5Sanofi-Aventis Pharma Deutschland GmbH, TD Metabolism, Frankfurt, Germany
  • 6Institut für Umweltmedizinische Forschung (IUF) at Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
  • 7Medizinische Klinik und Poliklinik III, Technische Universität Dresden, Germany Universitätsklinikum Carl Gustav Carus, Dresden, Germany
  • 8Endokrinologikum Ruhr, Bochum, Germany
Further Information

Publication History

received 13.03.2009

accepted 27.05.2009

Publication Date:
03 July 2009 (online)

Abstract

The biguanide derivative metformin is a potent anti-diabetic drug widely used in the treatment of type 2 diabetes mellitus. Its major effect on glucose metabolism consists in the inhibition of hepatic glucose production. Since the mechanisms of metformin action are only partially understood at the molecular level, we studied the regulation of the gene promoter activity of glucose-6-phosphatase (G6Pase), the central hepatic gluconeogenic enzyme, by this drug. We have found that both metformin and insulin inhibit the basal and dexamethasone/cAMP-stimulated G6Pase promoter activity in hepatoma cells. Since one of the pharmacological targets of metformin is AMP-activated protein kinase (AMPK) and activation of AMPK is known to inhibit hepatic glucose production by the suppression of G6Pase gene transcription, we studied the effect of AMPK in this context. Under nonstimulated conditions, the inhibitory effect of both insulin and metformin was partially counteracted to a similar extent by treatment with compound C, a specific inhibitor of AMPK. In contrast, under conditions of stimulation with dexamethasone and cAMP, treatment with compound C reversed the inhibitory effect of metformin on G6Pase promoter activity to a similar extent as compared to nonstimulated conditions, whereas the effect of insulin was almost resistant to treatment with the AMPK-antagonist. These data indicate a differential AMPK-dependent regulation of G6Pase gene expression by insulin and metformin under basal and dexamethasone/cAMP-stimulated conditions.

References

  • 1 Schwarz PE, Reimann M, Li J, Bergmann A, Licinio J, Wong ML, Bornstein SR. The Metabolic Syndrome – a global challenge for prevention.  Horm Metab Res. 2007;  39 777-780
  • 2 Schwarz PE, Bornstein SR, Hanefeld M. The future of the metabolic syndrome.  Horm Metab Res. 2009;  41 73-74
  • 3 Reimann M, Bonifacio E, Solimena M, Schwarz PE, Ludwig B, Hanefeld M, Bornstein SR. An update on preventive and regenerative therapies in diabetes mellitus.  Pharmacol Ther. 2009;  121 317-331
  • 4 Schinner S, Scherbaum WA, Bornstein SR, Barthel A. Molecular mechanisms of insulin resistance.  Diabet Med. 2005;  22 674-682
  • 5 Barthel A, Schmoll D. Novel concepts in insulin regulation of hepatic gluconeogenesis.  Am J Physiol Endocrinol Metab. 2003;  285 E685-E692
  • 6 Barthel A, Schmoll D, Unterman TG. FoxO proteins in insulin action and metabolism. Trends in endocrinology and metabolism.  TEM. 2005;  16 183-189
  • 7 Nordlie RC, Foster JD, Lange AJ. Regulation of glucose production by the liver.  Annu Rev Nutr. 1999;  19 379-406
  • 8 Schmoll D, Walker KS, Alessi DR, Grempler R, Burchell A, Guo S, Walther R, Unterman TG. Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity.  J Biol Chem. 2000;  275 36324-36333
  • 9 Barthel A, Herzig S, Muller HW, Harborth J, Bornstein SR. RNA interference-based strategies for metabolic syndrome treatment.  Horm Metab Res. 2005;  37 59-62
  • 10 Magalhaes FO, Gouveia LM, Torquato MT, Paccola GM, Piccinato CE, Foss MC. Metformin increases blood flow and forearm glucose uptake in a group of non-obese type 2 diabetes patients.  Horm Metab Res. 2006;  38 513-517
  • 11 Ou HY, Cheng JT, Yu EH, Wu TJ. Metformin increases insulin sensitivity and plasma beta-endorphin in human subjects.  Horm Metab Res. 2006;  38 106-111
  • 12 Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR, Shulman GI. Mechanism by which metformin reduces glucose production in type 2 diabetes.  Diabetes. 2000;  49 2063-2069
  • 13 Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus.  N Engl J Med. 1995;  333 550-554
  • 14 Morioka K, Nakatani K, Matsumoto K, Urakawa H, Kitagawa N, Katsuki A, Hori Y, Gabazza EC, Yano Y, Nishioka J, Nobori T, Sumida Y, Adachi Y. Metformin-induced suppression of glucose-6-phosphatase expression is independent of insulin signaling in rat hepatoma cells.  Int J Mol Med. 2005;  15 449-452
  • 15 Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE. Role of AMP-activated protein kinase in mechanism of metformin action.  J Clin Invest. 2001;  108 1167-1174
  • 16 Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling.  Circ Res. 2007;  100 328-341
  • 17 Barthel A, Schmoll D, Kruger KD, Roth RA, Joost HG. Regulation of the forkhead transcription factor FKHR (FOXO1a) by glucose starvation and AICAR, an activator of AMP-activated protein kinase.  Endocrinology. 2002;  143 3183-3186
  • 18 Lochhead PA, Salt IP, Walker KS, Hardie DG, Sutherland C. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase.  Diabetes. 2000;  49 896-903
  • 19 Scheen AJ. Clinical pharmacokinetics of metformin.  Clin Pharmacokinet. 1996;  30 359-371
  • 20 Kefas BA, Cai Y, Kerckhofs K, Ling Z, Martens G, Heimberg H, Pipeleers D, Van de Casteele M. Metformin-induced stimulation of AMP-activated protein kinase in beta-cells impairs their glucose responsiveness and can lead to apoptosis.  Biochem Pharmacol. 2004;  68 409-416
  • 21 Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction.  Mol Cell. 2000;  6 87-97
  • 22 Lamers WH, Hanson RW, Meisner HM. cAMP stimulates transcription of the gene for cytosolic phosphoenolpyruvate carboxykinase in rat liver nuclei.  Proc Natl Acad Sci USA. 1982;  79 5137-5141
  • 23 Lange AJ, Argaud D, el-Maghrabi MR, Pan W, Maitra SR, Pilkis SJ. Isolation of a cDNA for the catalytic subunit of rat liver glucose-6-phosphatase: regulation of gene expression in FAO hepatoma cells by insulin, dexamethasone and cAMP.  Biochem Biophys Res Commun. 1994;  201 302-309
  • 24 Schmoll D, Wasner C, Hinds CJ, Allan BB, Walther R, Burchell A. Identification of a cAMP response element within the glucose- 6-phosphatase hydrolytic subunit gene promoter which is involved in the transcriptional regulation by cAMP and glucocorticoids in H4IIE hepatoma cells.  Biochem J. 1999;  338 ((Pt 2)) 457-463
  • 25 Ellis L, Clauser E, Morgan DO, Edery M, Roth RA, Rutter WJ. Replacement of insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase activity and uptake of 2-deoxyglucose.  Cell. 1986;  45 721-732
  • 26 Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA. Mechanism of activation of protein kinase B by insulin and IGF-1.  EMBO J. 1996;  15 6541-6551
  • 27 Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes.  Am J Physiol. 1999;  277 E1-E10
  • 28 Stein SC, Woods A, Jones NA, Davison MD, Carling D. The regulation of AMP-activated protein kinase by phosphorylation.  Biochem J. 2000;  345 ((Pt 3)) 437-443
  • 29 Hundal RS, Inzucchi SE. Metformin: new understandings, new uses.  Drugs. 2003;  63 1879-1894
  • 30 Grempler R, Gunther S, Steffensen KR, Nilsson M, Barthel A, Schmoll D, Walther R. Evidence for an indirect transcriptional regulation of glucose-6-phosphatase gene expression by liver X receptors.  Biochem Biophys Res Commun. 2005;  338 981-986
  • 31 Grempler R, Kienitz A, Werner T, Meyer M, Barthel A, Ailett F, Sutherland C, Walther R, Schmoll D. Tumour necrosis factor alpha decreases glucose-6-phosphatase gene expression by activation of nuclear factor kappaB.  Biochem J. 2004;  382 471-479

1 Equal contribution of both authors.

Correspondence

Dr. A. Barthel

Endokrinologikum Ruhr

Alter Markt 4

44866 Bochum

Germany

Phone: +49/2327/964 20

Fax: +49/2327/96 42 99

Email: Andreas.Barthel@endokrinologikum.com

    >