Neuropediatrics 2009; 40(2): 92-96
DOI: 10.1055/s-0029-1237721
Short Communication

© Georg Thieme Verlag KG Stuttgart · New York

Perfusion Abnormalities in Hemimegalencephaly

P. Wintermark1 , E. Roulet-Perez2 , M. Maeder-Ingvar3 , A. C. Moessinger1 , F. Gudinchet4 , R. Meuli4
  • 1Division of Neonatology, Department of Pediatrics, University Hospital (CHUV) and Lausanne Medical School, Lausanne, Switzerland
  • 2Unit of Pediatric Neurology and Rehabilitation, Department of Pediatrics, University Hospital (CHUV) and Lausanne Medical School, Lausanne, Switzerland
  • 3Department of Neurology, University Hospital (CHUV) and Lausanne Medical School, Lausanne, Switzerland
  • 4Department of Radiology, University Hospital (CHUV) and Lausanne Medical School, Lausanne, Switzerland
Further Information

Publication History

received 02.12.2008

accepted 27.07.2009

Publication Date:
06 October 2009 (online)

Abstract

Introduction: Cerebrovascular changes are rarely discussed in patients with hemimegalencephaly. These alterations have previously been associated with epileptical activity.

Case: We report the case of a 36-week gestation neonate presenting with total right hemimegalencephaly, as demonstrated by a magnetic resonance imaging (MRI) performed in the first days of life. Perfusion-weighted imaging displayed a clear hypervascularization of the right hemisphere. Diffusion-tensor imaging showed an arrangement of white matter fibers concentrically around the ventricle on the right hemisphere. AngioMRI showed an obvious asymmetry in the size of the middle cerebral arteries, with the right middle cerebral artery being prominent. The baby was free of clinical seizures during his first week of life. An electroencephalogram at that time displayed an asymmetric background activity, but no electrical seizures.

Conclusion: Perfusion anomalies in hemimegalencephaly may not necessarily be related to epileptical activity, but may be related to vessel alterations.

References

  • 1 Alfonso I, Papazian O, Litt R. et al . Similar brain SPECT findings in subclinical and clinical seizures in two neonates with hemimegalencephaly.  Pediatr Neurol. 1998;  19 132-134
  • 2 Antonelli A, Chiaretti A, Amendola T. et al . Nerve growth factor and brain-derived neurotrophic factor in human paediatric hemimegalencephaly.  Neuropediatrics. 2004;  35 39-44
  • 3 Cristaldi A, Vigevano F, Antoniazzi G. et al . Hemimegalencephaly, hemihypertrophy and vascular lesions.  Eur J Pediatr. 1995;  154 134-137
  • 4 Flores-Sarnat L. Hemimegalencephaly: part 1. Genetic, clinical, and imaging aspects.  J Child Neurol. 2002;  17 373-384
  • 5 Flores-Sarnat L, Sarnat HB, Dávila-Gutiérrez G. et al . Hemimegalencephaly: part 2. Neuropathology suggests a disorder of cellular lineage.  J Child Neurol. 2003;  18 776-785
  • 6 Jahan R, Mischel PS, Curran JG. et al . Bilateral neuropathologic changes in a child with hemimegalencephaly.  Pediatr Neurol. 1997;  17 344-349
  • 7 Norman MG, O'Kusky JR. The growth and development of microvasculature in human cerebral cortex.  J Neuropathol Exp Neurol. 1986;  45 222-232
  • 8 Sasaki K, Ohsawa Y, Sasaki M. et al . Cerebral cortical dysplasia: assessment by MRI and SPECT.  Pediatr Neurol. 2000;  23 410-415
  • 9 Soufflet C, Bulteau C, Delalande O. et al . The nonmalformed hemisphere is secondarily impaired in young children with hemimegalencephaly: a pre- and postsurgery study with SPECT and EEG.  Epilepsia. 2004;  45 1375-1382
  • 10 Takashima S, Chan F, Becker LE. et al . Aberrant neuronal development in hemimegalencephaly: immunohistochemical and Golgi studies.  Pediatr Neurol. 1991;  7 275-280
  • 11 Tagawa T, Otani K, Futagi Y. et al . Serial IMP-SPECT and EEG studies in an infant with hemimegalencephaly.  Brain Dev. 1994;  16 475-479
  • 12 Hallene KL, Oby E, Lee BJ. et al . Prenatal exposure to thalidomide, altered vasculogenesis, and CNS malformations.  Neuroscience. 2006;  142 267-283
  • 13 Yu J, Baybis M, Lee A. et al . Targeted gene expression analysis in hemimegalencephaly: activation of beta-catenin signaling.  Brain Pathol. 2005;  15 179-186
  • 14 Boer K, Troost D, Spliet WG. et al . Cellular distribution of vascular endothelial growth factor A (VEGFA) and B (VEGFB) and VEGF receptors 1 and 2 in focal cortical dysplasia type IIB.  Acta Neuropathol. 2008;  115 683-696
  • 15 Kyin R, Hua Y, Baybis M. et al . Differential cellular expression of neurotrophins in cortical tubers of the tuberous sclerosis complex.  Am J Pathol. 2001;  159 1541-1554
  • 16 El-Hashemite N, Walker V, Zhang H. et al . Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin.  Cancer Res. 2003;  63 5173-5177
  • 17 Napolioni V, Moavero R, Curatolo P. Recent advances in neurobiology of tuberous sclerosis complex.  Brain Dev. 2009;  31 104-113
  • 18 Lee DF, Hung MC. All roads lead to mTOR: integrating inflammation and tumor angiogenesis.  Cell Cycle. 2007;  6 3011-3014
  • 19 la Fougère C, Rominger A, Förster S. et al . PET and SPECT in epilepsy: A critical review.  Epilepsy Behav. 2009;  , Epub ahead of print
  • 20 Sporis D, Hajnsek S, Boban M. et al . Epilepsy due to malformations of cortical development – correlation of clinical, MRI and Tc-99mECD SPECT findings.  Coll Antropol. 2008;  32 345-350

Correspondence

Pia WintermarkMD 

c/o Adrien Moessinger

Division of Neonatology

Department of Pediatrics

University Hospital and Lausanne Medical School

CHUV

1011 Lausanne

Switzerland

Phone: +41/21/314 36 68

Fax: +41/21/314 34 77

Email: Pia.Wintermark@bluemail.ch

    >