Int J Sports Med 2010; 31(2): 138-142
DOI: 10.1055/s-0029-1242808
Genetics & Molecular Biology

© Georg Thieme Verlag KG Stuttgart · New York

ACTN3 Polymorphism Affects Thigh Muscle Area

H. Zempo1 , K. Tanabe1 , H. Murakami2 , M. Iemitsu3 , S. Maeda1 , S. Kuno1
  • 1Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan
  • 2Health Promotion and Exercise Program, National Institute of Health and Nutrition, Tokyo, Japan
  • 3Physical Education, International Pacific University, Okayama, Japan
Further Information

Publication History

accepted after revision September 24, 2009

Publication Date:
17 December 2009 (online)

Abstract

Muscle mass is an important factor influencing the activity of daily living in older adults. We aimed to investigate whether α-actinin-3 (ACTN3) gene R577X polymorphism affects muscle mass in older Japanese women. A total of 109 women (mean±SD, 64.1±6.0 years) were genotyped for the R/X variant of ACTN3. Mid-thigh muscle cross-sectional area (CSA) was assessed using MRI and compared using analysis of covariance models adjusted for body weight. In addition, physical activity and protein intake were measured as the living environmental factors affecting muscle mass. The ACTN3 R577X genotype distributions of the subjects were 19, 63 and 27 for the RR, RX, and XX genotypes, respectively. No differences in physical activity and protein intake were observed among the genotypes. The XX genotype showed lower thigh muscle CSA compared with RR&RX genotype (mean±SEM; XX: 69.1±1.8 cm2, RR&RX: 73.6±1.1 cm2; p<0.05). The results of the present study suggest that ACTN3 R577X polymorphism influences muscle mass in older Japanese women.

References

  • 1 Ministry of Education, Culture, Sports, Science and Technology-Japan . The Survey of Physical Fitness and Ability to Exercise, 2006 edition. http://www.mext.go.jp/b_menu/houdou/19/10/07092511/007/002.xls (japanese)
  • 2 R Development Core Team .R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 2005 http://www.r-project.org.
  • 3 The International HapMap Consortium. . The International HapMap Project.  Nature. 2003;  426 789-796
  • 4 Ainsworth BE, Haskell WL, Leon AS, Jacobs Jr DR, Montoye HJ, Sallis JF, Paffenbarger RS. Compendium of physical activities: classification of energy costs of human physical activities.  Med Sci Sports Exerc. 1993;  25 71-80
  • 5 Akima H, Kano Y, Enomoto Y, Ishizu M, Okada M, Oishi Y, Katsuta S, Kuno S. Muscle function in 164 men and women aged 20–84 yr.  Med Sci Sports Exerc. 2001;  33 220-226
  • 6 Arden NK, Spector TD. Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study.  J Bone Miner Res. 1997;  12 2076-2081
  • 7 Ben Hamida C, Soussi-Yanicostas N, Butler-Browne GS, Bejaoui K, Hentati F, Ben Hamida M. Biochemical and immunocytochemical analysis in chronic proximal spinal muscular atrophy.  Muscle Nerve. 1994;  17 400-410
  • 8 Borst SE. Interventions for sarcopenia and muscle weakness in older people.  Age Ageing. 2004;  33 548-555
  • 9 Clarkson PM, Devaney JM, Gordish-Dressman H, Thompson PD, Hubal MJ, Urso M, Price TB, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Seip RL, Hoffman EP. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women.  J Appl Physiol. 2005;  99 154-163
  • 10 Delmonico MJ, Kostek MC, Doldo NA, Hand BD, Walsh S, Conway JM, Carignan CR, Roth SM, Hurley BF. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women.  J Gerontol A Biol Sci Med Sci. 2007;  62 206-212
  • 11 Deschenes MR. . Effects of aging on muscle fibre type and size.  Sports Med. 2004;  34 809-824
  • 12 Doherty TJ. Invited review: Aging and sarcopenia.  J Appl Physiol. 2003;  95 1717-1727
  • 13 Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV, Zusmanovich P, Sulem P, Thorlacius S, Gylfason A, Steinberg S, Helgadottir A, Ingason A, Steinthorsdottir V, Olafsdottir EJ, Olafsdottir GH, Jonsson T, Borch-Johnsen K, Hansen T, Andersen G, Jorgensen T, Pedersen O, Aben KK, Witjes JA, Swinkels DW, den Heijer M, Franke B, Verbeek AL, Becker DM, Yanek LR, Becker LC, Tryggvadottir L, Rafnar T, Gulcher J, Kiemeney LA, Kong A, Thorsteinsdottir U, Stefansson K. Many sequence variants affecting diversity of adult human height.  Nat Genet. 2008;  40 609-615
  • 14 Iemitsu M, Maeda S, Otsuki T, Sugawara J, Tanabe T, Jesmin S, Kuno S, Ajisaka R, Miyauchi T, Matsuda M. Polymorphism in endothelin-related genes limits exercise-induced decreases in arterial stiffness in older subjects.  Hypertension. 2006;  47 928-936
  • 15 Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr.  J Appl Physiol. 2000;  89 81-88
  • 16 Kamel HK. Sarcopenia and aging.  Nutr Rev. 2003;  61 157-167
  • 17 Lettre G, Jackson AU, Gieger C, Schumacher FR, Berndt SI, Sanna S, Eyheramendy S, Voight BF, Butler JL, Guiducci C, Illig T, Hackett R, Heid IM, Jacobs KB, Lyssenko V, Uda M. Diabetes Genetics Initiative; FUSION; KORA; Prostate, Lung Colorectal and Ovarian Cancer Screening Trial; Nurses' Health Study; SardiNIA, Boehnke M, Chanock SJ, Groop LC, Hu FB, Isomaa B, Kraft P, Peltonen L, Salomaa V, Schlessinger D, Hunter DJ, Hayes RB, Abecasis GR, Wichmann HE, Mohlke KL, Hirschhorn JN.   Identification of ten loci associated with height highlights new biological pathways in human growth.  Nat Genet. 2008;  40 584-591
  • 18 MacArthur DG, Seto JT, Chan S, Quinlan KG, Raftery JM, Turner N, Nicholson MD, Kee AJ, Hardeman EC, Gunning PW, Cooney GJ, Head SI, Yang N, North KN. An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance.  Hum Mol Genet. 2008;  17 1076-1086
  • 19 Masaki T, Endo M, Ebashi S. Localization of 6S component of a alpha-actinin at Z-band.  J Biochem. 1967;  62 630-632
  • 20 Mathur S, Takai KP, Macintyre DL, Reid D. Estimation of thigh muscle mass with magnetic resonance imaging in older adults and people with chronic obstructive pulmonary disease.  Phys Ther. 2008;  88 219-230
  • 21 Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.  Diabetologia. 1985;  28 412-419
  • 22 Moran CN, Yang N, Bailey ME, Tsiokanos A, Jamurtas A, MacArthur DG, North K, Pitsiladis YP, Wilson RH. Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks.  Eur J Hum Genet. 2007;  15 88-93
  • 23 Norman B, Esbjörnsson M, Rundqvist H, Osterlund T, von Walden F, Tesch PA. Strength, Power, Fiber Types and mRNA expression in trained men and women with different ACTN3 R577X genotypes.  J Appl Physiol. 2009 Jan 15;  [Epub ahead of print] 
  • 24 North KN, Beggs AH. Deficiency of a skeletal muscle iso-form of alpha-actinin (alpha-actinin-3) in merosin-positive congenital muscular dystrophy.  Neuromuscul Disord. 1996;  6 229-235
  • 25 North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH. A common nonsense mutation results in alpha-actinin-3 deficiency in the general population.  Nat Genet. 1999;  21 353-354
  • 26 Ogura Y, Naito H, Kakigi R, Ichinoseki-Sekine N, Kurosaka M, Katamoto S. Alpha-actinin-3 levels increase concomitantly with fast fibers in rat soleus muscle.  Biochem Biophys Res Commun. 2008;  372 584-588
  • 27 Papadimitriou ID, Papadopoulos C, Kouvatsi A, Triantaphyllidis C. The ACTN3 gene in elite Greek track and field athletes.  Int J Sports Med. 2008;  29 352-355
  • 28 Peter I, Huggins GS, Shearman AM, Pollak A, Schmid CH, Cupples LA, Demissie S, Patten RD, Karas RH, Housman DE, Mendelsohn ME, Vasan RS, Benjamin EJ. Age-related changes in echocardiographic measurements: association with variation in the estrogen receptor-alpha gene.  Hypertension. 2007;  49 1000-1006
  • 29 Rajendra TK, Gonsalvez GB, Walker MP, Shpargel KB, Salz HK, Matera AG. A Drosophila melanogaster model of spinal muscular atrophy reveals a function for SMN in striated muscle.  J Cell Biol. 2007;  176 831-841
  • 30 Vincent B, De Bock K, Ramaekers M, Van den Eede E, Van Leemputte M, Hespel P, Thomis MA. ACTN3 (R577X) genotype is associated with fiber type distribution.  Physiol Genomics. 2007;  32 58-63
  • 31 Walsh S, Liu D, Metter EJ, Ferrucci L, Roth SM. ACTN3 genotype is associated with muscle phenotypes in women across the adult age span.  J Appl Physiol. 2008;  105 1486-1491
  • 32 Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, Freathy RM, Perry JR, Stevens S, Hall AS, Samani NJ, Shields B, Prokopenko I, Farrall M, Dominiczak A. Diabetes Genetics Initiative; Wellcome Trust Case Control Consortium, Johnson T, Bergmann S, Beckmann JS, Vollenweider P, Waterworth DM, Mooser V, Palmer CN, Morris AD, Ouwehand WH; Cambridge GEM Consortium, Zhao JH, Li S, Loos RJ, Barroso I, Deloukas P, Sandhu MS, Wheeler E, Soranzo N, Inouye M, Wareham NJ, Caulfield M, Munroe PB, Hattersley AT, McCarthy MI, Frayling TM.   Genome-wide association analysis identifies 20 loci that influence adult height.  Nat Genet. 2008;  40 575-583
  • 33 Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, North K. ACTN3 genotype is associated with human elite athletic performance.  Am J Hum Genet. 2003;  73 627-631

Correspondence

Dr. Shinya Kuno

University of Tsukuba

Graduate school of comprehensive human sciences

Tennodai 1-1-1

305–8577 Tsukuba

Japan

Phone: +81/29/853/73 36

Fax: +81/29/853/64 07

Email: kuno@taiiku.tsukuba.ac.jp

    >