Int J Sports Med 2010; 31(6): 372-376
DOI: 10.1055/s-0030-1248330
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Acetazolamide and Exercise Hypoxia

J. E. Lafleur1 , D. Bartniczuk2 , A. Collier3 , N. Griffin4 , E. R. Swenson5
  • 1Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, RI, USA
  • 2Department of Emergency Medicine, Downstate Medical Center/Kings County Hospital Center, Brooklyn, NY, USA
  • 3Department of Emergency Medicine, North Division of Montefiore Bronx, NY, USA
  • 4Department of Emergency Medicine, Lincoln Medical and Mental Health Center, Bronx, NY, USA
  • 5Department of Medicine and Physiology, Pulmonary Section, University of Washington Seattle, WA, USA
Further Information

Publication History

accepted after revision January 22, 2010

Publication Date:
23 April 2010 (online)

Abstract

Acetazolamide is useful for acclimatizing to high altitude. How long it should be taken, and the physiological consequences of stopping it have not been thoroughly studied. We investigated the effect of acetazolamide cessation on exercise oxygenation at different altitudes and durations of use. Three groups were studied: group 1 acclimatized to 4 060 m for 6 days while taking acetazolamide 250 mg three times a day. On day 7 acetazolamide was stopped, then resumed on day 8. Standardized exercise oximetry was performed each day. The protocol for group 2 was identical to group 1, except acclimatization occurred over 14 days to 4 120 m. The protocol for group 3 was identical to group 2, except subjects acclimatized to 4 770 m. Multivariate regression revealed a negative effect of stopping acetazolamide on exercise oxygenation (p=0.028). At 4 100 m cessation of acetazolamide after one week resulted in a 11% drop in exercise oxygenation (p=0.008); after two weeks acclimatization to this altitude there was an non-significant drop in exercise oxygenation (2.5% p=0.064). At 4 770 m acetazolamide cessation resulted in an increase in exercise oxygenation (7% p=0.027). We conclude that exercise oxygenation after acetazolamide cessation is dependent both on duration of acclimatization/drug administration, and acclimatization altitude.

References

  • 1 Bartels H. The biological significance of the Bohr effect.. Alfred Benzon Symposium IV, Copenhagen: Munksgaard; 1972: 717-724
  • 2 Benoit H, Busso T, Castells J, Geyssant A, Denis C. Decrease in peak heart rate with acute hypoxia in relation to sea level VO(2max).  Eur J Appl Physiol. 2003;  90 514-519
  • 3 Bradwell AR, Dykes PW, Coote JH, Forster PJ, Milles JJ, Chesner I, Richardson NV. Effect of acetazolamide on exercise performance and muscle mass at high altitude.  Lancet. 1986;  1 1001-1005
  • 4 Brechue WF, Stager JM, Lukaski HC. Body water and electrolyte responses to acetazolamide in humans.  J Appl Physiol. 1990;  69 1397-1401
  • 5 Cymerman A, Reeves JT, Sutton JR, Rock PB, Groves BM, Malconian MK, Young PM, Wagner PD, Houston CS. Operation Everest II: maximal oxygen uptake at extreme altitude.  J Appl Physiol. 1989;  66 2446-2453
  • 6 Faoro V, Huez S, Giltaire S, Pavelescu A, van Osta A, Moraine JJ, Guenard H, Martinot JB, Naeije R. Effects of acetazolamide on aerobic exercise capacity and pulmonary hemodynamics at high altitudes.  J App Physiol. 2007;  103 1161-1165
  • 7 Garske LA, Brown MG, Morrison SC. Acetazolamide reduces exercise capacity and increases leg fatigue under hypoxic conditions.  J Appl Physiol. 2003;  94 991-996
  • 8 Gertsch JH, Basnyat B, Johnson EW, Onopa J, Holck PS. Randomised, double blind, placebo controlled comparison of ginkgo biloba and acetazolamide for prevention of acute mountain sickness among Himalayan trekkers: the prevention of high altitude illness trial (PHAIT).  Br Med J. 2004;  328 797-789
  • 9 Grant BJB. Influence of Bohr-Haldane effect on steady-state gas exchange.  J Appl Physiol. 1982;  52 1330-1337
  • 10 Grissom CK, Roach RC, Sarnquist FH, Hackett PH. Acetazolamide in the treatment of acute mountain sickness: clinical efficacy and effect on gas exchange.  Ann Int Med. 1992;  116 461-465
  • 11 Hackett PH, Schoene RB, Winslow RM, Peters RM, West JB. Acetazolamide and exercise in sojourners to 6 300 m-a preliminary study.  Med Sci Sport Exerc. 1985;  17 593-597
  • 12 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 13 Hoehne C, Krebs MO, Seiferheld M, Boemke W, Kaczmarczyk G, Swenson ER. Acetazolamide prevents hypoxic pulmonary vasoconstriction in conscious dogs.  J Appl Physiol. 2004;  97 515-521
  • 14 Jonk AM, van den Berg IP, Olfert IM, Wray DW, Arai T, Hopkins SR, Wagner PD. Effect of acetazolamide on pulmonary and muscle gas exchange during normoxic and hypoxic exercise.  J Physiol. 2007;  579 (Pt 3) 909-921
  • 15 Maren TH, Swenson ER. A comparative study of the kinetics of the Bohr effect in vertebrates.  J Physiol. 1980;  303 535-547
  • 16 McLellan T, Jacobs I, Lewis W. Acute altitude exposure and altered exercise ventilation and blood lactate responses.  Eur J Appl Physiol. 1988;  57 445-451
  • 17 Pugh LGCE, Gill MB, Lahiri S, Milledge JS, Ward MP, West JB. Muscular exercise at great altitudes.  J Appl Physiol. 1964;  19 431-440
  • 18 Ralston AC, Webb RK, Runciman WB. Potential errors in pulse oximetry. III: Effects of interferences, dyes, dyshaemoglobins and other pigments.  Anaesth. 1991;  46 291-295
  • 19 Ritschel WA, Paulos C, Arancibia A, Agrawal MA, Wetzelsberger KM, Lucker PW. Pharmacokinetics of acetazolamide in healthy volunteers after short-and long-term exposure to high altitude.  J Clin Pharmacol. 1998;  38 533-539
  • 20 Bhargava M, Runyon MR, Wangensteen OD, Swenson ER, Ingbar DH. Acetazolamide stimulates alveolar fluid clearance in ventilated adult rat lungs [abstract].  Proc Am Thorac So. 2005;  2 A479
  • 21 Schoene RB, Bates PW, Larson EB, Pierson DJ. Effect of acetazolamide on normoxic and hypoxic exercise in humans at sea level.  J Appl Physiol. 1983;  55 1772-1776
  • 22 Stager JM, Tucker A, Cordain L, Engebretsen BJ, Brechue F, Matulich CC. Normoxic and acute hypoxic exercise tolerance in man following acetazolamide.  Med Sci Sport Exer. 1990;  22 178-184
  • 23 Swenson ER, Maren TH. A quantitative analysis of CO2 transport at rest and during maximal exercise.  Respir Physiol. 1978;  35 129-159
  • 24 Swenson ER. Carbonic anhydrase inhibitors and ventilation: a complex interplay of stimulation and suppression.  Eur Respir J. 1998;  12 1242-1247
  • 25 Swenson ER. Carbonic anhydrase inhibitors and hypoxic pulmonary vasoconstriction.  Respir Physiol Neurobiol. 2006;  151 209-216
  • 26 Torre-Bueno JR, Wagner PD, Saltzman HA, Gale GE, Moon RE. Diffusion limitation in normal humans during exercise at sea level and simulated altitude.  J Appl Physiol. 1985;  58 989-995
  • 27 Wagner PD, Sutton JR, Reeves JT, Cymerman A, Groves BM, Malconian MK. Operation Everest II: pulmonary gas exchange during a simulated ascent of Mt.  EverestJ Appl Physiol. 1987;  63 2348-2359

Correspondence

Dr. John Edmond Lafleur

Department of Emergency

Medicine

Alpert Medical School of

Brown University

55 Claverick St.

Providence, RI, 02903

United States

Phone: +1/401/639 2072

Fax: +1/401/793 3105

Email: johnelafleur@gmail.com

    >