Thorac Cardiovasc Surg 2011; 59(2): 78-84
DOI: 10.1055/s-0030-1250434
Original Basic Science

© Georg Thieme Verlag KG Stuttgart · New York

Activation of Cardiomyocytes Depending on Their Proximity to Human Bone Marrow Stem Cells

F. Roeske1 , A. Stein1 , A. Salameh2 , A. Rastan1 , B. Ziegelhoeffer1 , J. Garbade1 , M. Misfeld1 , M. Kostelka1 , F. W. Mohr1 , S. Dhein1
  • 1Clinic for Cardiac Surgery, University of Leipzig, Leipzig, Germany
  • 2Clinic for Pediatric Cardiology, University of Leipzig, Leipzig, Germany
Further Information

Publication History

received May 27, 2010

Publication Date:
07 March 2011 (online)

Abstract

Our study aimed to elucidate whether bone marrow stem cell (BMC) treatment might result in a cellular response in cardiomyocytes in vitro. Subconfluent neonatal rat cardiomyocyte cultures were cocultured for three days with Vybrant CM‐DiI labeled BMC from human sternal bone marrow and underwent immunohistological staining for the proto-oncogene c-Myc and the cell cycle proteins CDK2, CDK4 and ATF-3. β-adrenoceptor density was analyzed using [125I]-iodocyanopindolol (ICYP) histoautoradiography. Quantitative analysis of immunohistochemical images revealed significantly increased expression and upregulation of c-Myc, and its downstream targets ATF-3, CDK2 and CDK4 in neighboring cardiomyocytes to BMC, depending on their distance to the BMC compared to cardiomyocytes far from the BMC. Histoautoradiography revealed a significantly higher β-adrenoceptor density in cardiomyocytes in the immediate vicinity to the BMC. With increasing distance to the BMC, β-adrenoceptor density in cardiomyocytes declined. Thus, a small number of BMC can affect a larger number of cardiomyocytes by activating an intracellular signaling cascade and enhancing β-adrenoceptor density.

References

  • 1 Assmus B, Schachinger V, Teupe C et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI).  Circulation. 2002;  106 3009-3017
  • 2 Schachinger V, Assmus B, Britten M B et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial.  J Am Coll Cardiol. 2004;  44 1690-1699
  • 3 Wollert K C, Meyer G P, Lotz J et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial.  Lancet. 2004;  364 141-148
  • 4 Perin E C, Dohmann H F R, Borojevic R et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure.  Circulation. 2003;  107 2294-2302
  • 5 Tomita S, Li R K, Weisel R D et al. Autologous transplantation of bone marrow cells improves damaged heart function.  Circulation. 1999;  100 247-256
  • 6 Nygren J M, Jovinge S, Breitbach M et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation.  Nature Med. 2004;  10 494-501
  • 7 Balsam L B, Wagers A J, Christensen J L, Kofidis T, Weissman I L, Robbins R C. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium.  Nature. 2004;  428 668-673
  • 8 Lu C, Arai M, Misao Y et al. Autologous bone marrow cell transplantation improves left ventricular function in rabbit hearts with cardiomyopathy via myocardial regeneration-unrelated mechanisms.  Heart Vessels. 2006;  21 180-187
  • 9 Iso Y, Spees L J, Serrano C et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment.  Biochem Biophys Res Comm. 2007;  354 700-706
  • 10 Urbich C, Aicher A, Heeschen C et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells.  J Mol Cell Cardiol. 2005;  39 733-742
  • 11 Gnecchi M, He H, Noiseux N et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement.  FASEB J. 2006;  20 661-669
  • 12 Gnecchi M, Zhang Z, Ni A, Dzau V J. Paracrine mechanisms in stem cell signaling and therapy.  Circ Res. 2008;  103 1204-1219
  • 13 Dhein S, Garbade J, Rouabah D et al. Effects of autologous bone marrow stem cell transplantation on beta-adrenoceptor density and electrical activation pattern in a rabbit model of non-ischemic heart failure.  J Cardiothorac Surg. 2006;  1 17
  • 14 Whitelaw P F, Hesketh J E. Expression of c-Myc and c-fos in rat skeletal muscle. Evidence for increased levels of c-Myc mRNA during hypertrophy.  Biochem J. 1992;  281 143-147
  • 15 Polontchouk L, Ebelt B, Jackels M, Dhein S. Chronic effects of endothelin-1 and angiotensin-II on gap junctions and intercellular communication in cardiac cells.  FASEB J. 2002;  16 87-89
  • 16 Summers R J, Molenaar P. Autoradiography of β1- and β2-adrenoceptors.. In: Kendall D A, Hill S J, eds. Methods in Molecular Biology. Vol. 41: Signal Transduction Protocols.. Totowa, NJ, USA: Humana Press; 1995: 25-39
  • 17 Tamura K, Hua B, Adachi S et al. Stress response gene ATF3 is a target of c-Myc in serum-induced cell proliferation.  EMBO J. 2005;  24 2590-2601
  • 18 Xiao G, Mao S, Baumgarten G et al. Inducible activation of c-Myc in adult myocardium in vivo provokes cardiac myocyte hypertrophy and reactivation of DNA synthesis.  Circ Res. 2001;  89 1122-1129
  • 19 Oster S K, Ho C S, Soucie E L, Penn L Z. The Myc oncogene: MarvelouslY Complex.  Adv Cancer Res. 2002;  84 81-154
  • 20 Menssen A, Hermeking H. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes.  Proc Natl Acad Sci USA. 2002;  99 6274-6279
  • 21 Mateyak M K, Obaya A J, Sedivy J M. c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points.  Mol Cell Biol. 1999;  19 4672-4683
  • 22 Jackson T, Allard M F, Sreenan C M, Doss L K, Bishop S P, Swain J L. The c-Myc proto-oncogene regulates cardiac development in transgenic mice.  Mol Cell Biol. 1990;  10 3709-3716
  • 23 Wolfgang C D, Liang G, Okamoto Y, Allen A E, Hai T. Transcriptional autorepression of the stress-inducible gene ATF3.  J Biol Chem. 2000;  275 16865-16870
  • 24 Morgan D O. Cyclin-dependent kinases: engines, clocks and microprocessors.  Ann Rev Cell Dev Biol. 1997;  13 261-291
  • 25 Stevens C, La Thangue N B. E2F and cell cycle control: a double-edged sword.  Arch Biochem Biophys. 2003;  412 157-169
  • 26 Trosko J E, Chang C C, Wilson M R, Upham B L, Hayashi T, Wade M. Gap junctions and the regulation of cellular function of stem cells during development and differentiation.  Methods. 2000;  20 245-264
  • 27 Matic M, Evans W H, Brink P R, Simon M. Epidermal stem cells do not communicate through gap junctions.  J Invest Dermatol. 2002;  118 110-116
  • 28 Koyanagi M, Brandes R P, Haendeler J, Zeiher A M, Dimmeler S. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes?.  Circ Res. 2005;  96 1039-1041
  • 29 Rastan A J, Walther T, Kostelka M et al. Morphological, electrophysiological and coupling characteristics of bone marrow-derived mononuclear cells–an in-vitro model.  Eur J Cardiothorac Surg. 2005;  27 104-110
  • 30 Dimmeler S, Zeiher A M, Schneider M D. Unchain my heart: the scientific foundations of cardiac repair.  J Clin Invest. 2005;  115 572-583
  • 31 Zhong W, Mao S, Tobis S et al. Hypertrophic growth in cardiac myocytes is mediated by Myc through a cyclin D2-dependent pathway.  EMBO J. 2006;  25 (16) 3869-3879
  • 32 Beltrami A P, Barlucchi L, Torella D et al. Adult cardiac stem cells are multipotent and support myocardial regeneration.  Cell. 2003;  114 763-776
  • 33 Oh H, Bradfute S B, Gallardo T D et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction.  Proc Natl Acad Sci USA. 2003;  100 12313-12318
  • 34 Kajstura J, Leri A, Finato N et al. Myocyte proliferation in end-stage cardiac failure in humans.  Proc Natl Acad Sci USA. 1998;  95 8801-8805
  • 35 Bristow M R, Ginsburg R, Minobe W et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts.  N Engl J Med. 1982;  307 205-211
  • 36 Brodde O E, Michel M C, Zerkowski H-R. Signal transduction mechanisms controlling cardiac contractility and their alterations in chronic heart failure.  Cardiovasc Res. 1995;  30 570-584
  • 37 Sigmund M, Jakob H, Becker H et al. Effects of metoprolol on myocardial beta-adrenoceptors and Gi alpha-proteins in patients with congestive heart failure.  Eur J Clin Pharmacol. 1996;  51 127-132
  • 38 Leineweber K, Rohe P, Beilfuss A et al. G-protein-coupled receptor kinase activity in human heart failure: effects of beta-adrenoceptor blockade.  Cardiovasc Res. 2005;  66 512-519
  • 39 Dangel V, Giray J, Ratge D, Wisser H. Regualtion of beta-adrenoceptor density and mRNA levels in the rat heart cell-line H9c2.  Biochem J. 1996;  317 925-931
  • 40 Viticchi C, Basso A, Zaia A, Piantanelli L. Thyroid hormone-induced upregulation of beta1- and beta2-adrenergic receptors during aging.  Arch Gerontol Geriatr. 1992;  15 (Suppl. 1) 367-374
  • 41 Kam K W, Qi J S, Chen M, Wong T M. Estrogen reduces cardiac injury and expression of beta1-adrenoceptor upon ischaemic insult in the rat heart.  J Pharmacol Exp Ther. 2004;  309 8-15

Prof. Stefan Dhein

Clinic for Cardiac Surgery
University of Leipzig

Struempellstr. 39

04289 Leipzig

Germany

Phone: +49 34 18 65 16 51

Fax: +49 34 18 65 14 52

Email: dhes@medizin.uni-leipzig.de

    >