Planta Med 2011; 77(8): 865-871
DOI: 10.1055/s-0030-1250601
Biochemistry, Molecular Biology and Biotechnology
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Association between Chemical and Genetic Variation of Wild and Cultivated Populations of Scrophularia ningpoensis Hemsl.

Shuting Yang1 , 2 [*] , Chuan Chen1 [*] , Yunpeng Zhao1 , Wang Xi1 , Xiaolong Zhou3 , Binlong Chen3 , Chengxin Fu2
  • 1The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, P. R. China
  • 2Laboratory of Systematic & Evolutionary Botany and Biodiversity, Institute of Plant Sciences , and Conservation Center for Gene Resources of Endangered Wildlife, Zhejiang University, Hangzhou, P. R. China
  • 3Pan'an Institute of Chinese Materia Medica, Pan'an, P. R. China
Further Information

Publication History

received April 30, 2010 revised October 4, 2010

accepted Nov. 11, 2010

Publication Date:
14 December 2010 (online)

Abstract

Scrophularia ningpoensis Hemsl. is an important Chinese medicinal herb with a domestication history of more than one thousand years. Although a number of studies have focused on either chemical or genetic variation, none have dealt with their association to discuss the formation of chemical diversity. We applied HPLC fingerprinting with identification of four predominant bioactive compounds using LC‐ESI‐MS to assess chemical variation among 6 cultivated and 5 wild populations of S. ningpoensis. Significant chemical differences were revealed between wild and cultivated populations in terms of chromatographic profiles, principal component analysis (PCA) plots, and bioactive compounds contents. Compared to cultivated populations, the chemical profiles varied considerably among wild populations, of which some were remarkably similar to cultivated populations. Inter simple sequence repeats (ISSR) fingerprinting indicated a genetic differentiation pattern parallel to chemical variation. Evidence strongly supported the association between chemical and genetic variation of S. ningpoensis. Based on both sets of data, suggestions are proposed for the conservation of genetic diversity, crop improvement, and good agricultural practice. The present results will also facilitate our theoretical understanding of the selective and adaptive evolutionary processes of medicinal plant species impacted by domestication and a changing environment.

References

  • 1 Fernie A R. The future of metabolic phytochemistry: larger numbers of metabolites, higher resolution, greater understanding.  Phytochemistry. 2007;  68 2861-2880
  • 2 Hartmann T. From waste products to ecochemicals: fifty years research of plant secondary metabolism.  Phytochemistry. 2007;  68 2831-2846
  • 3 Hoisington D, Khairallah M, Reeves T, Ribaut J M, Skovmand B, Taba S, Warburton M. Plant genetic resources: what can they contribute toward increased crop productivity?.  Proc Natl Acad Sci USA. 1999;  96 5937-5943
  • 4 Fernie A R, Tadmor Y, Zamir D. Natural genetic variation for improving crop quality.  Curr Opin Plant Biol. 2006;  9 196-202
  • 5 Diaz A M, Abad M J, Fernandez L, Silvan A M, De Santos J, Bermejo P. Phenylpropanoid glycosides from Scrophularia scorodonia: in vitro anti-inflammatory activity.  Life Sci. 2004;  74 2515-2526
  • 6 Galindez J D, Lanza A M D, Matellano L F. Biologically active substances from the genus Scrophularia.  Pharm Biol. 2002;  40 45-59
  • 7 Garcia D, Fernandez A, Saenz T, Ahumada C. Antiinflammatory effects of different extracts and harpagoside isolated from Scrophularia frutescens L.  Farmaco. 1996;  51 443-446
  • 8 Liu L, Hudgins W R, Shack S, Yin M Q, Samid D. Cinnamic acid: a natural product with potential use in cancer intervention.  Int J Cancer. 1995;  65 345-350
  • 9 Miyazawa M, Okuno Y, Nakamura S, Kameoka H. Suppression of SOS-inducing activity of chemical mutagens by cinnamic acid derivatives from Scrophulia ningpoensis in the Salmonella typhimurium TA1535/pSK1002 umu Test.  J Agric Food Chem. 1998;  46 904-910
  • 10 Zhang H X, Song J Y, Zhao S R, Zhao H Q, Gong K M. Simultaneous determination of the contents of the cinnamic acid and harpagoside in Radix Scrophulariae by RP-HPLC.  J Shenyang Pharm Univ. 2006;  23 507-510
  • 11 Liu C W, Bi Z M, Zhu Y F, Li P. Simultaneous determination of four kinds of bioactive components in Radix Scrophulariae by HPLC.  China Pharm J. 2007;  42 1614-1616
  • 12 Li P, Zhang Y, Xiao L, Jin X, Yang K. Simultaneous determination of harpagoside and cinnamic acid in rat plasma by high-performance liquid chromatography: application to a pharmacokinetic study.  Anal Bioanal Chem. 2007;  389 2259-2264
  • 13 Wang S J, Ruan J X, Zhao Y H. Simultaneous determination of harpagoside and cinnamic acid in rat plasma by liquid chromatography electrospray ionization mass spectrometry and its application to pharmacokinetic studies.  Biomed Chromatogr. 2008;  22 50-57
  • 14 Zhu Y F, Bi Z M, Liu C W, Ren M T, Wu F H, Li P. Endothelial cell extraction and HPLC-ESI/TOF MS analysis for predicting potential bioactive components of Radix Scrophulariae.  J China Pharm Univ. 2008;  39 228-231
  • 15 Bai Z C. Fingerprints of Radix Scrophulariae by HPLC.  Chin Mater Med. 2006;  29 1295-1299
  • 16 Ma D F, Zhou N, Bai Z C, Fang L J, Sun C J. Identification of the habitat of Radix Scrophulariae with chromatographic fingerprinting.  Lishizhen Med Mater Med Res. 2009;  20 789-793
  • 17 Zhao Z X, Liang Z S, Jiang Z M, Xue Y F, Yang Y Z. Establishment and optimization of ISSR reaction system for Scrophularia ningpoensis Hemsl.  Pharm Biotechnol. 2007;  14 318-323
  • 18 Zhao Z X. The study on germplast resources diversity of Scrophularian ningpoensis Hemsl. [dissertation]. Yangling; Northwest Agricultural Forestry University 2008
  • 19 Chen D X, Li L Y, Peng R, Wu Y, Cai Y. Analysis of genetic difference among Scrophularia ningpoensis cultivars by SRAP.  China J Chin Mater Med. 2009;  34 138-142
  • 20 Doyle J J. DNA protocols for plants – CTAB total DNA isolation. Hewitt GM, Johnston A Molecular techniques in taxonomy. Heidelberg; Springer-Verlag 1991: 283-293
  • 21 Yeh F C, Yang R C, Boyle T B, Ye Z H, Mao J X. POPGENE, the user-friendly shareware for population genetic analysis. Available at. http://www.ualberta.ca/~fyeh Accessed October 3, 2009
  • 22 Holsinger K E, Lewis P O. Hickory: a package for analysis of population genetic data V1.0. Available at. http://www.eeb.uconn.edu Accessed October 3, 2009
  • 23 Miller M P. AMOVA-PREP 1.01: A program for the preparation of AMOVA input files from dominant-markers raw data. Flagstaff; Department of Biological Sciences, Northern Arizona University 1998
  • 24 Excoffier L, Smouse P E, Quattro J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data.  Genetics. 1992;  131 479-491
  • 25 Kovach W L. MVSP – A multivariate statistical package for windows, version 3.1. Wales; Kovach Computing Services 1999
  • 26 Medina-Holguin A L, Holguin F O, Micheletto S, Goehle S, Simon J A, O'Connell M A. Chemotypic variation of essential oils in the medicinal plant, Anemopsis californica.  Phytochemistry. 2008;  69 919-927
  • 27 Medina-Holguin A L, Martin C, Micheletto S, Holguín F O, Rodriguez J, O'Connel M A. Environmental influences on essential oils in roots of Anemopsis californica.  Hortscience. 2007;  42 1578-1583
  • 28 Gerson E A, Kelsy R G, Clair J B. Genetic variation of piperidine alkaloids in Pinus ponderosa: a common garden study.  Ann Bot. 2009;  103 447-457
  • 29 Hu Y, Zhang Q Y, Xin H L, Qin L P, Lu B R, Rahman K, Zheng H. Association between chemical and genetic variation of Vitex rotundifolia populations from different locations in China: its implication for quality control of medicinal plants.  Biomed Chromatogr. 2007;  21 967-975
  • 30 Vrijenhoek R C. Animal population genetics and disturbance: the effects of local extinctions and recolonizations on heterozygosity and fitness. Pickett STA, White PS The ecology of natural disturbance and path dynamics. London, MA; Academic Press 1985: 265-285
  • 31 Abbo S, Berger J, Turner N C. Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation.  Funct Plant Biol. 2003;  30 1081-1087
  • 32 Doebley J. Isozymic evidence and the evolution of crop plants. Soltis DE, Soltis PS Isozymes in plant biology. Portland; Dioscorides Press 1989: 165-191

1 These two authors contributed to this work equally.

Dr. Yunpeng Zhao

Department of Biology
College of Life Sciences, Zhejiang University

388 Yukangtang Road

Hangzhou 310058

P. R. China

Phone: +86 5 71 88 20 64 63

Fax: +86 5 71 86 43 22 73

Email: ypzhao@zju.edu.cn

Prof. Chengxin Fu

Laboratory of Systematic and Evolutionary Botany
Institute of Plant Sciences, Zhejiang University

388 Yukangtang Road

Hangzhou 310058

P. R. China

Phone: +86 5 71 88 20 66 07

Fax: +86 5 71 86 43 22 73

Email: cxfu@zju.edu.cn

>