Planta Med 2011; 77(9): 894-899
DOI: 10.1055/s-0030-1250627
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

The Extract of Rhodiolae Crenulatae Radix et Rhizoma Induces the Accumulation of HIF-1α via Blocking the Degradation Pathway in Cultured Kidney Fibroblasts

Ken Y. Z. Zheng1 , Ava J. Y. Guo1 , Cathy W. C. Bi1 , Kevin Y. Zhu1 , Gallant K. L. Chan1 , Qiang Fu1 , Sherry L. Xu1 , Janis Y. Z. Zhan1 , David T. W. Lau1 , Tina T. X. Dong1 , Roy C. Y. Choi1 , Karl W. K. Tsim1
  • 1Section of Marine Ecology and Biotechnology, Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
Further Information

Publication History

received October 22, 2010 revised Nov. 17, 2010

accepted Nov. 19, 2010

Publication Date:
14 December 2010 (online)

Abstract

Rhodiolae Crenulatae Radix et Rhizoma (Rhodiola), the root and rhizome of Rhodiola crenulata (Hook. f. et Thoms.) H. Ohba, has been used as a traditional Chinese medicine (TCM) to increase the body resistance against hypoxia in mountain sickness. The mechanism of this adaptogenic property deriving from Rhodiola, however, has not been revealed. Erythropoietin (EPO) is an erythrocyte-specific hematopoietic hormone that increases the production of red blood cells: this hormone is a crucial factor in regulating the body balance in responding to hypoxia. In cultured kidney fibroblasts (HEK293T), application of water extract deriving from Rhodiola induced the expression of EPO both in mRNA and protein levels. The activation of the hypoxia response element (HRE) located on the promoter region of the EPO gene is one of the mechanisms accounting for transcriptional activation. In addition, the Rhodiola-induced EPO expression was triggered by an increase of hypoxia-inducible factor-1α (HIF-1α) protein, via the reduction of HIF-1α degradation but not the induction of HIF-1α mRNA. Moreover, the same EPO induction effect by Rhodiola was also observed in cultured liver cells since liver is another vital organ to provide EPO regulation apart from the kidney. These results therefore elucidate one of the molecular mechanisms of this herb in mediating the anti-hypoxia function.

References

  • 1 Brown R P, Gerbarg P L, Ramazanov Z. Rhodiola rosea: a phytomedicinal overview.  Herbalgram. 2002;  56 40-52
  • 2 Kelly G S. Rhodiola rosea: a possible plant adaptogen.  Altern Med Rev. 2001;  6 293-302
  • 3 Gupta V, Saggu S, Tulsawani R K, Sawhney R C, Kumar R. A dose dependent adaptogenic and safety evaluation of Rhodiola imbricata Edgew, a high altitude rhizome.  Food Chem Toxicol. 2008;  46 1645-1652
  • 4 Gupta V, Lahiri S S, Sultana S, Kumar R. Mechanism of action of Rhodiola imbricata Edgew during exposure to cold, hypoxia and restraint (C–H–R) stress induced hypothermia and post stress recovery in rats.  Food Chem Toxicol. 2009;  47 1239-1245
  • 5 Dame C, Kirschner K M, Bartz K V, Wallach T, Hussels C S, Scholz H. Wilms tumor suppressor, Wt1, is a transcriptional activator of the erythropoietin gene.  Blood. 2006;  107 4282-4290
  • 6 Jelkmann W. Erythropoietin: structure, control of production, and function.  Physiol Rev. 1992;  72 449-489
  • 7 Semenza G L. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1.  Annu Rev Cell Dev Biol. 1999;  15 551-578
  • 8 Jewell U R, Kvietikova I, Scheid A, Bauer C, Wenger R H, Gassmann M. Induction of HIF-1α in response to hypoxia is instantaneous.  FASEB J. 2001;  15 1312-1314
  • 9 Mu D, Jiang X, Sheldon R A, Fox C K, Hamrick S E, Vexler Z S, Ferriero D M. Regulation of hypoxia-inducible factor 1α and induction of vascular endothelial growth factor in a rat neonatal stroke model.  Neurobiol Dis. 2003;  14 524-534
  • 10 Jaakkola P, Mole D R, Tian Y M, Wilson M I, Gielbert J, Gaskell S J, Kriegsheim Av, Hebestreit H F, Mukherji M, Schofield C J, Maxwell P H, Pugh C W, Ratcliffe P J. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation.  Science. 2001;  292 449-451
  • 11 Gao Q T, Cheung J K, Choi R C, Cheung A W, Li J, Jiang Z Y, Duan R, Zhao K J, Ding A W, Dong T T, Tsim K W K. A Chinese herbal decoction prepared from Radix Astragali and Radix Angelicae Sinensis induces the expression of erythropoietin in cultured Hep3B cells.  Planta Med. 2008;  74 392-395
  • 12 Post D E, Van-Meir E G. Generation of bidirectional hypoxia/HIF-responsive expression vectors to target gene expression to hypoxic cells.  Gene Ther. 2001;  8 1801-1807
  • 13 Xie H Q, Choi R C, Leung K W, Siow N L, Kong L W, Lau F T, Peng H B, Tsim K W K. Regulation of a transcript encoding the proline-rich membrane anchor of globular muscle acetylcholinesterase: the suppressive roles of myogenesis and innervating nerves.  J Biol Chem. 2007;  282 11765-11775
  • 14 Wang X H, Cavell B E, Syed Alwi S S, Packham G. Inhibition of hypoxia inducible factor by phenethyl isothiocyanate.  Biochem Pharmacol. 2009;  78 261-272
  • 15 Li T, Zhang H. Identification and comparative determination of rhodionin in traditional tibetan medicinal plants of fourteen Rhodiola species by high-performance liquid chromatography-photodiode array detection and electrospray ionization-mass spectrometry.  Chem Pharm Bull. 2008;  56 807-814
  • 16 Shao M L. Pharmacopoeia of the People's Republic of China (Part I). Beijing; Chemical Industry Press 2010: 144
  • 17 Panossian A, Wikman G, Sarris J. Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy.  Phytomedicine. 2010;  17 481-493
  • 18 Nakamura S, Li X Z, Matsuda H, Yoshikawa M. Bioactive constituents from Chinese natural medicines. XXVIII. Chemical structures of acyclic alcohol glycosides from the roots of Rhodiola crenulata.  Chem Pharm Bull. 2008;  56 536-540
  • 19 Kucinskaite A, Pobłocka-Olech L, Krauze-Baranowska M, Sznitowska M, Savickas A, Briedis V. Evaluation of biologically active compounds in roots and rhizomes of Rhodiola rosea L. cultivated in Lithuania.  Medicina. 2007;  43 487-494
  • 20 Zhang J, Liu A, Hou R, Zhang J, Jia X, Jiang W, Chen J. Salidroside protects cardiomyocyte against hypoxia-induced death: a HIF-1α-activated and VEGF-mediated pathway.  Eur J Pharmacol. 2009;  607 6-14
  • 21 Yeo E J, Cho Y S, Kim M S, Park J W. Contribution of HIF-1α or HIF-2α to erythropoietin expression: in vivo evidence based on chromatin immunoprecipitation.  Ann Hematol. 2008;  87 11-17
  • 22 Schofield C J, Ratcliffe P J. Oxygen sensing by HIF hydroxylases.  Nat Rev Mol Cell Biol. 2004;  5 343-354
  • 23 Rankin E B, Biju M P, Liu Q, Unger T L, Rha J, Johnson R S, Simon M C, Keith B, Haase V H. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo.  J Clin Invest. 2007;  117 1068-1077

Dr. Karl W. K. Tsim

Section of Marine Ecology and Biotechnology
Division of Life Science
The Hong Kong University of Science and Technology

Clear Water Bay Road

Hong Kong

China

Phone: +85 2 23 58 73 32

Fax: +85 2 23 58 15 59

Email: botsim@ust.hk

>