Vanadium Oxytrihalide (VOX₃)

Compiled by Thanh-Tuan Bui

Thanh-Tuan Bui was born in Phu Tho (Vietnam) in 1983. He obtained his Licence and Maîtrise degrees from the Université de Paris-Sud 11 in 2004 and 2005, respectively. He completed his engineering degree (Diplôme d’Ingénieur) of the École Nationale Supérieure de Chimie de Montpellier in 2007. Since November 2007, he has been a Ph.D. candidate at the Université Paul Sabatier de Toulouse and has carried out his doctoral work in the Laboratoire de Chimie de Coordination du CNRS de Toulouse under the guidance of Dr. K. I. Moineau-Chane Ching and Dr. B. Garreau-de Bonneval. His current research interest includes the synthesis of neutral metal bis-dithiolene complexes for organic electronic applications.

Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31400 Toulouse, France
E-mail: bui@lcc-toulouse.fr

Introduction

Applications of VOX₃ (X = F or Cl) in organic synthesis have gained significant importance in recent years. VOX₃ are well-known as strong oxidizing agents promoting both intra- and intermolecular oxidative biaryl coupling. This property has been used for synthesis of natural products,¹,² phenantridine,³ phenanthrene⁴ and phenanthrene-9,10-dione⁵ derivatives. It were also used for the synthesis of discotic liquid crystalline triphenylene⁶ and heteroanalouges.⁷ VOX₃ also acted as regio- and stereoselective dimerization agents of stilbene derivatives,⁸ and as hydroxylation⁹ and aromatization¹⁰ agents. Other applications of VOX₃ are the synthesis of near-infrared absorbent organic semiconductor vanadyl phthalocyanine for organic electronic applications¹¹,¹² and the use as catalysts in asymmetric synthesis.¹³

Abstracts

(A) The intramolecular oxidative biaryl coupling is one of the most significant applications of VOX₃ in organic synthesis. Numerous important natural products containing the biaryl segments have been synthesized.¹,² As example, the oxidative cyclization with VOF₃ of bursehemin resulted in a new deoxy isosteganone.³

(B) VOX₃ also promotes the intermolecular oxidative biaryl coupling. Weck et al.⁵ synthesized the triphenylene grafting functional alkyl chain by oxidative aryl–aryl coupling of the tetraalkoxy-substituted biphenyls with the bisalkylated catechols using VOF₃ in the presence of boron trifluoride diethyl ether.

(C) Hartenstein et al.⁹ studied the diastereoselective synthesis of the aporphine alkaloid (+)-cataline and they found that the reaction of (±)-glaucine with VOF₃ gave (±)-cataline, respectively. Carefully chromatographic separation of the reaction product yields to small amounts of the respective diastereomeric cis-4-hydroxyaporphine. Its antipode could also be isolated.
(D) VOX₃ can be used as metal oxidant in the regio- and stereoselective dimerization of stilbene derivatives. Velu et al.⁸ reported that the treatment of 12-hydroxy-3-methoxystilbene with VOF₃ gave the tricuspidadol A analogue.

(F) Villemin et al.¹¹ developed a microwave-assisted, dry reaction (solvent-free) for the one-step synthesis of metallophthalocyanines. The strong near-infrared absorbent vanadyl phthalocyanine complex was obtained from phthalonitrile and VOCl₃ as blue-green solid in high yield (81%).

(G) VOX₃ were also used in the synthesis of VO(salen)(X) complexes, which are powerful catalysts for the asymmetric addition of the cyanide nucleophile to benzaldehyde.¹³

References


