Diastereoselective Catalytic C–H Amination

Significance: The metal-mediated direct amination through C–H bond insertion is a very powerful transformation. It usually requires a metal nitrene species which undergoes C–H insertion into the most nucleophilic C–H bond. Herein, the authors report their preliminary results of a diastereoselective version of this reaction applied to acyclic substrates of type 1, proceeding with an excellent degree of selectivity and high yields.

Comment: The authors found that especially substrates with bigger substituents [X = PO(OEt)₂, SO₂Ph] gave the best selectivities. An important feature is that the C–H amination process does not affect the configuration of the stereogenic center in β-position when the reaction was carried out with enantiomerically pure starting material. Furthermore, a possible explanation for the diastereoselective outcome of the transformation has been assumed by considering the staggered conformer A to be more favored than conformer B due to dipole repulsion.