D. DANG, P. WU, C. HE, Z. XIE, C. DUAN* (DALIAN UNIVERSITY OF TECHNOLOGY, P. R. OF CHINA)

Homochiral Metal-Organic Frameworks for Heterogeneous Asymmetric Catalysis *J. Am. Chem. Soc.* **2010**, *132*, 14321-14323.

Asymmetric Catalysis with MOFs Prepared via Chiral Induction Effect

Preparation of homochiral MOF catalysts:

anti

Cyanosilylation and aldol reaction using homochiral MOF catalysts:

The catalytic cyanosilylation:

		00 (70)		
Entry	Ar	Ce-MDIP1	Ce-MDIP2	
1	Ph	93	94	
2	4-MeO	91	97	
3	1-Naph	98	>98	
4	2-Naph	>98	>98	

The direct aldol reaction:

			Cd-TBT		
	Entry	Ar	Yield (%)	ee (%)	
	1	2-O ₂ NC ₆ H ₄	42	60	
	2	3-O ₂ NC ₆ H ₄	77	61	
	3	4-O ₂ NC ₆ H ₄	97	58	
	4	1-Naph	8	n.d.	
_	(values represent the major isomer)				

Significance: Homochiral metal-organic frameworks (MOFs) were prepared through the chiral induction effect. Thus, the homochiral crystallization of Ce(NO₃)·6H₂O and H₄MDIP was performed with L- or D-BCIP as chiral inducers in water to give Ce-MDIP1 and Ce-MDIP2 (where no BCIP was installed), which exhibited Cotton effects exactly opposite to each other. Ce-MDIPs promoted the cyanosilylation to give the corresponding cyanohydrin derivatives quantitatively with 93 to >98% ee.

Comment: Ce-MDIP1 was reused twice without significant loss of catalytic activity. Cd-TBT was also prepared from Cd(ClO₄)-6H₂O and H₃TBT under similar conditions. Cd-TBT mediated the direct aldol reaction of aldehydes and cyclohexanone to afford the corresponding β -hydroxy ketones in 8–97% yield with 58–61% ee in ten days.

SYNFACTS Contributors: Yasuhiro Uozumi, Yoichi M. A. Yamada, Yoshinari Yuyama Synfacts 2011, 1, 0105-0105 Published online: 21.12.2010 **DOI:** 10.1055/s-0030-1259143; **Reg-No.:** Y14210SF

2011 10:10:25/8 0030 123/113, 110g 11011 11 1210

Category

Polymer-Supported Synthesis

Key words

homochiral metalorganic frameworks

cyanosilylation

cerium

