Synlett 2011(10): 1381-1384  
DOI: 10.1055/s-0030-1260585
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Direct Synthesis of α-Keto Esters from Ethylbenzenes Using 48% Aqueous HBr by Aerobic Visible Light Photooxidation

Norihiro Tada, Kazunori Ban, Tomoya Nobuta, Shin-ichi Hirashima, Tsuyoshi Miura, Akichika Itoh*
Gifu Pharmaceutical University 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
Fax: +81(58)2308105; e-Mail: itoha@gifu-pu.ac.jp;
Further Information

Publication History

Received 7 February 2011
Publication Date:
26 May 2011 (online)

Abstract

We report that ethylbenzenes can be directly oxidized to the corresponding α-keto esters with molecular oxygen in the presence of 48% aqueous HBr under visible light irradiation. This synthetic procedure is the first example for direct preparation of the corresponding α-keto esters from ethylbenzenes.

    References and Notes

  • 1a Comprehensive Organic Transformations   2nd ed.:  Larock RC. Wiley; New York: 1999.  p.1625 
  • 1b March’s Advanced Organic Chemistry   6th ed.:  Smith MB. March JA. John Wiley & Sons, Inc.; Hoboken: 2007.  p.1745 
  • 1c Uyanik M. Fukatsu R. Ishihara K. Chem. Asian J.  2010,  5:  456 
  • 2a Kraus GA. Zhang N. J. Org. Chem.  2000,  65:  5644 
  • 2b Akiyama T. Suzuki M. Chem. Commun.  1997,  2357 
  • 3a Loupy A. Monteux DA. Tetrahedron  2002,  58:  1541 
  • 3b Tanaka K. Katsurada M. Ohno F. Shiga Y. Oda M. J. Org. Chem.  2000,  65:  432 
  • 3c Axten JM. Krim L. Kung HF. Winkler JD. J. Org. Chem.  1998,  63:  9628 
  • 4a Xiang J. Ming L. Bao L. Chin. Chem. Lett.  2009,  20:  55 
  • 4b Lee JI. J. Korean Chem. Soc.  2004,  48:  103 
  • 4c Maeda H. Hino N. Yamauchi Y. Ohmori H. Chem. Pharm. Bull.  2000,  48:  1196 
  • 4d Kashima C. Shirahata Y. Tsukamoto Y. Heterocycles  1998,  49:  459 
  • 4e Rambaud M. Bakasse M. Duguay G. Villieras J. Synthesis  1988,  564 
  • 4f Creary X. J. Org. Chem.  1987,  52:  5026 
  • 4g Itoh O. Nagata T. Nomura I. Takanaga T. Sugita T. Ichikawa K. Bull. Chem. Soc. Jpn.  1984,  57:  810 
  • 4h Weinstock LM. Currie RB. Lovell AV. Synth. Commun.  1981,  11:  943 
  • 4i Nimitz JS. Mosher HS. J. Org. Chem.  1981,  46:  211 
  • 5a Tatlock JH. J. Org. Chem.  1995,  60:  6221 
  • 5b Müller P. Godoy J. Tetrahedron Lett.  1982,  23:  3661 
  • 6a Li L.-S. Wu Y.-L. Tetrahedron Lett.  2002,  43:  2427 
  • 6b Nishinaga A. Maruyama K. Yoda K. Okamoto H.
    J. Chem. Soc., Chem. Commun.  1990,  876 
  • For recent examples, see:
  • 7a Johnston EV. Karlsson EA. Tran L.-H. Aakermark B. Baeckvall J.-E. Eur. J. Org. Chem.  2010,  1971 
  • 7b Yadav GD. Motirale BG. Chem. Eng. J.  2010,  156:  328 
  • 7c Park HJ. Lee JC. Synlett  2009,  79 
  • 7d Hosseinzadeh R. Tajbakhsh M. Khaledi H. J. Chin. Chem. Soc.  2008,  55:  239 
  • 7e Oba M. Okada Y. Nishiyama K. Shimada S. Ando W. Chem. Commun.  2008,  5378 
  • 7f Shei C.-T. Chien H.-L. Sung K. Synlett  2008,  1021 
  • 7g Pandey SK. Bisai A. Singh VK. Synth. Commun.  2007,  37:  4099 
  • 7h Demizu Y. Shiigi H. Oda T. Matsumura Y. Onomura O. Tetrahedron Lett.  2007,  49:  48 
  • 7i Lu N. Lin Y.-C. Tetrahedron Lett.  2007,  48:  8823 
  • 8a Wu X. Gorden AEV. Eur. J. Org. Chem.  2009,  503 
  • 8b Nakanishi M. Bolm C. Adv. Synth. Catal.  2007,  349:  861 
  • 8c Golchoubian H. Ghaziani ANK. Pol. J. Chem.  2005,  79:  825 
  • 8d Das S. Bhowmick T. Punniyamurthy T. Dey D. NaTh J. Chaudhuri MK. Tetrahedron Lett.  2003,  44:  4915 
  • 8e Wentzei BB. Donners MPJ. Alster PL. Feiters MC. Nolte RJM. Tetrahedron  2000,  56:  7797 
  • 8f Matsunaka K. Iwahama T. Sakaguchi S. Ishii Y. Tetrahedron Lett.  1999,  40:  2165 
  • 8g Zhao D. Lee DG. Synthesis  1994,  915 
  • 8h Choudary BM. Reddy GVS. Rao KK. J. Chem. Soc., Chem. Commun.  1993,  323 
  • 8i Wasserman HH. Ives JL. J. Org. Chem.  1985,  50:  3573 
  • 9a Kobayashi T. Yamashita H. Sakakura T. Tanaka M. J. Mol. Catal.  1987,  41:  379 
  • 9b Sakakura T. Yamashita H. Kobayashi T. Hayashi T. Tanaka M. J. Org. Chem.  1987,  52:  5733 
  • 9c Tanaka M. Kobayashi T. Sakakura T. J. Chem. Soc., Chem. Commun.  1985,  837 
  • 9d Ozawa F. Kawasaki N. Yamamoto T. Yamamoto A. Chem. Lett.  1985,  14:  567 
  • 9e Tanaka M. Kobayashi T. Sakakura T. Itatani H. Danno S. Zushi K. J. Mol. Catal.  1985,  32:  115 
  • 10 Schaefer JP. Corey EJ. J. Org. Chem.  1959,  24:  1825 
  • 11 Zhuang J. Wang C. Xie F. Zhang W. Tetrahedron  2009,  65:  9797 
  • 12a Izawa Y. Ishiguro K. Tomioka H. Bull. Chem. Soc. Jpn.  1983,  56:  1490 
  • 12b Izawa Y. Tomioka H. Natsume M. Beppu S. Tsujii H. J. Org. Chem.  1980,  45:  4835 
  • 13a Hirashima S. Nobuta T. Tada N. Miura T. Itoh A. Org. Lett.  2010,  12:  1620 
  • 13b Hirashima S. Itoh A. J. Synth. Org. Chem. Jpn.  2008,  66:  748 
  • 13c Hirashima S. Itoh A. Photochem. Photobiol. Sci.  2007,  6:  521 
  • 13d Sugai T. Itoh A. Tetrahedron Lett.  2007,  48:  9096 
  • 13e Hirashima S. Itoh A. Synthesis  2006,  1757 
  • 13f Itoh A. Hashimoto S. Kodama T. Masaki Y. Synlett  2005,  2107 
  • 13g Itoh A. Kodama S. Hashimoto S. Masaki Y. Synthesis  2003,  2289 
  • 14 Tada N. Ban K. Hirashima S. Miura T. Itoh A. Org. Biomol. Chem.  2010,  8:  4701 
15

When 48% aq HBr (1.2 equiv) and H2O (100 µL) were used as additive, ethylbenzene 1d was converted into α-bromo-acetophenone (3d) in 68% yield.¹4

16

Typical Procedure: An anhyd EtOAc solution (5 mL) of ethylbenzenes (0.3 mmol) and 48% aq HBr (0.75 mmol) in a pyrex test tube equipped with an O2 balloon was stirred and irradiated with four 22-W fluorescent lamps, which were set up at a distance of 65 mm, for 20 h. The temperature of the final stage of this reaction was about 40 ˚C. The reaction mixture was concentrated under reduced pressure, and the pure product was obtained by purification with preparative TLC.