Synthesis 2011(13): 2131-2135  
DOI: 10.1055/s-0030-1260604
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis and Absolute Configuration of the 7-Phenylhepta-4,6-diyne-1,2-diol Isolated from Bidens pilosa

Shan Cuia,b, Yang Zoua, Yikang Wu*a, Po Gao*b
a State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China
e-Mail: yikangwu@sioc.ac.cn;
b School of Chemistry and Materials, Heilongjiang University, Harbin 150080, P. R. of China
Further Information

Publication History

Received 29 March 2011
Publication Date:
26 May 2011 (online)

Abstract

The title diynediol was synthesized in enantiopure (>98.4% ee) forms, with the cross coupling of phenylacetylene with either (R)- or (S)-5-benzyloxypent-1-yn-4-ol catalyzed by nickel(II) chloride-copper(I) iodide as the key step. Comparison of the spectroscopic data (especially the optical rotations) for the synthetic and natural samples revealed that the natural diynediol is of S-configuration. The unexpected formation of a pyranone ring at the alkyne terminal when cleaving a benzyl protecting group with acetic anhydride and trimethylsilyl triflate is also detailed; this approach illustrates a novel and mild entry to related pyranones.

    References

  • 1 Wang R. Wu Q.-X. Shi Y.-P. Planta Med.  2010,  76:  893 
  • 2a Oliveira FQ. Andrade-Neto V. Krettli AU. Brandão MGL. J. Ethnopharmacol.  2004,  93:  39 
  • 2b Brandão MGL. Krettli AU. Soares LSR. Nery CGC. Marinuzzi HC. J. Ethnopharmacol.  1997,  57:  131 
  • 2c Tonia R. van Staden J. J. Ethnopharmacol.  1997,  56:  81 
  • 2d Théophile D. Rakotonirina SV. Tan PV. Azay J. Dongo E. Gérard C. J. Ethnopharmacol.  2002,  83:  183 
  • 2e Ubillas RP. Mendez CD. Jolad SD. Luo J. King SR. Carlson TJ. Fort DM. Planta Med.  2000,  66:  82 
  • 3a Sneddon HF. van den Heuvel A. Hirsch AKH. Booth RA. Shaw DM. Gaunt MJ. Ley SV. J. Org. Chem.  2006,  71:  2715 
  • 3b Kinderman SS. Doodeman R. van Beijma JW. Russcher JC. Tjen KCMFT. Kooistra M. Mohaselzadeh H. van Maarseveen JH. Hiemstra H. Schoemaker HE. Rutjes FPJT. Adv. Synth. Catal.  2002,  344:  736 
  • 4 Yin W. He C. Chen M. Zhang H. Lei A. Org. Lett.  2009,  11:  709 
  • 5 Liu H.-J. Yip J. Shia K.-S. Tetrahedron Lett.  1997,  38:  2253 
  • 6 Alzeer J. Vasella A. Helv. Chim. Acta  1995,  78:  177 
  • 8 Cruciani P. Stammler R. Aubert C. Malacria M. J. Org. Chem.  1996,  61:  2699 
  • 9 Martin P. Mueller M. Flubacher D. Boudier A. Blaser H.-U. Spielvogel D. Org. Process Res. Dev.  2010,  14:  799 
  • 10a Moghaddam FM. Bardajee GR. Ismaili H. J. Braz. Chem. Soc.  2007,  18:  1024 
  • 10b Simalty M. Strzelecka H. Dupre M. C. R. Seances Acad. Sci., Ser. C  1967,  265:  1284 ; Chem. Abstr. 1967, 69, 2795
  • 10c Majetich G. Zhang Y. Dreyer G. Tetrahedron Lett.  1993,  34:  449 
  • 11 For configurational assignment of another natural diynediol by enantioselective synthesis, see: Wu J.-Z. Wu Y.-K. Jian Y.-J. Zhang Y.-H. Chin. J. Chem.  2009,  27:  13 
7

The propargylic CH2 group in the end product 1 was reported to give rise to a signal at δ = 2.63 (d, J = 6.6 Hz, 2 H) ppm (measured at 300 MHz) in the original isolation paper (see ref. 1). In this work, it is assigned as δ = 2.65 (dd, J = 17, 6.5 Hz, 1 H), 2.60 (dd, J = 17, 6.5 Hz, 1 H) ppm, because, in the 400 MHz spectrum, a doublet of rather low intensity was clearly seen on each side of the rather intense ones (which might be taken as a broadened doublet with a splitting of ca. 6.5 Hz if the small doublets on both sides are overlooked).