Synthesis 2011(13): 2165-2174  
DOI: 10.1055/s-0030-1260606
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

RuO4-Catalyzed Oxidation Reactions of N-Alkylisoxazolino-2-azanorbornane Derivatives: An Expeditious Route to Tricyclic γ-Lactams

Misal Giuseppe Memeo, Daniele (Pane) Mantione, Bruna Bovio, Paolo Quadrelli*
Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 12, 27100 Pavia, Italy
e-Mail: paolo.quadrelli@unipr.it;
Further Information

Publication History

Received 23 March 2011
Publication Date:
26 May 2011 (online)

Abstract

A rapid access to conformationally constrained γ-lactams has been developed through the efficient RuO4-mediated oxidation of regioisomeric N-alkylisoxazolino-2-azanorbornane derivatives. The competition between exocyclic and endocyclic oxidation on 2-azanorbornane moieties can be driven by the proper choice of alkyl substituent on the heterocyclic nitrogen atom. Valuable bridged γ-lactams - potential analogues of classical β-lactam antibiotics - are obtained by this method.

    References

  • 1a Rowland GB. Rowland EB. Zhang Q. Antilla JC. Curr. Org. Chem.  2006,  10:  981 
  • 1b Kobayashi S. Cycloaddition Reactions in Organic Synthesis   Kobayashi S. Jørgenson KA. Wiley-VCH; Weinheim: 2002.  p.187-209  
  • 1c Waldman H. Synthesis  1994,  535 
  • 1d Weinreb SM. Staib RR. Tetrahedron  1982,  38:  3087 
  • 1e Weinreb SM. Levin JI. Heterocycles  1979,  12:  949 
  • 2a Waldman H. Angew. Chem., Int. Ed. Engl.  1988,  27:  274 
  • 2b Grieco PA. Bahsas A. J. Org. Chem.  1987,  52:  5746 
  • 2c Larsen SD. Grieco PA. J. Am. Chem. Soc.  1985,  107:  1768 
  • 3a Bowser AM. Madalengoitia JS. Org. Lett.  2004,  6:  3409 
  • 3b Abraham H. Stella L. Tetrahedron  1992,  48:  9707 
  • 4 Grieco PA. Larsen SD. Org. Synth.  1990,  68:  206 
  • 5 Quadrelli P. Piccanello A. Vazquez Martinez N. Bovio B. Mella M. Caramella P. Tetrahedron  2006,  62:  7370 
  • 6 Djerassi C. Engle RR. J. Am. Chem. Soc.  1953,  75:  3838 
  • 7 For a review on RuO4-catalyzed oxidations, see: Plietker B. Synthesis  2005,  2453 
  • 8a Petride H. Constan O. Draghici C. Florea C. Petride A. ARKIVOC  2005,  (x):  18 
  • 8b Petride H. Draghici C. Florea C. Petride A. Cent. Eur. Sci. J.  2004,  2:  302 
  • 9 Memeo MG. Bovio B. Quadrelli P. Tetrahedron  2011,  67:  1907 
  • 10 Caramella P. Grünanger P. 1,3-Dipolar Cycloaddition Chemistry   Vol. 1:  Padwa A. Wiley; New York: 1984.  p.291-392  
  • 11a Quadrelli P. Mella M. Paganoni P. Caramella P. Eur. J. Org. Chem.  2000,  2613 
  • 11b Quadrelli P. Fassardi V. Cardarelli A. Caramella P. Eur. J. Org. Chem.  2002,  2058 
  • 12 Fliege W. Huisgen R. Liebigs Ann. Chem.  1973,  2038 
  • 13a Yu L. Li J. Ramirez J. Chen D. Weng PG. J. Org. Chem.  1997,  62:  903 
  • 13b Pinho P. Andersson PG. Chem. Commun.  1999,  597 
  • 14a Piperno A. Chiacchio U. Iannazzo D. Giofrè SV. Romeo G. Romeo R. J. Org. Chem.  2007,  72:  3958 
  • 14b Carlsen PHJ. Katsuki T. Martin VS. Sharpless KB. J. Org. Chem.  1981,  46:  3936 
  • 15a Kaname M. Yoshifuji S. Tetrahedron Lett.  1992,  33:  8103 
  • 15b Yoshifuji S. Kaname M. Chem. Pharm. Bull.  1995,  43:  1617 
  • 15c Merino P. Revuelta J. Tejero T. Chiacchio U. Rescifina A. Piperno A. Romeo G. Tetrahedron: Asymmetry  2002,  13:  167 
  • 16a Bakke JM. Frøhaug AE. J. Phys. Org. Chem.  1996,  9:  310 
  • 16b Bakke JM. Frøhaug AE. J. Phys. Org. Chem.  1996,  9:  507 
  • 16c Bakke JM. Braenden JE. Acta Chem. Scand.  1991,  45:  418 
  • 17 Naota T. Takaya H. Murahashi S.-L. Chem. Rev.  1998,  98:  2599 
  • 18 Lin G. Midha KK. Hawes EM. J. Heterocycl. Chem.  1991,  28:  215 
  • 19a Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Montgomery JA. Vreven T. Kudin KN. Burant JC. Millam JM. Iyengar SS. Tomasi J. Barone V. Mennucci B. Cossi M. Scalmani G. Rega N. Petersson GA. Nakatsuji H. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Klene M. Li X. Knox JE. Hratchian HP. Cross JB. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Ayala PY. Morokuma K. Voth GA. Salvador P. Dannenberg JJ. Zakrzewski VG. Dapprich S. Daniels AD. Strain MC. Farkas O. Malick DK. Rabuck AD. Raghavachari K. Foresman JB. Ortiz JV. Cui Q. Baboul AG. Clifford S. Cioslowski J. Stefanov BB. Liu G. Liashenko A. Piskorz P. Komaromi I. Martin RL. Fox DJ. Keith T. Al-Laham MA. Peng CY. Nanayakkara A. Challacombe M. Gill PMW. Johnson B. Chen W. Wong MW. Gonzalez C. Pople JA. Gaussian 03, Revision B. 02   Gaussian, Inc.; Pittsburgh: 2003. 
  • 19b

    Mol files of calculated structures reported in Figure  [³] are available upon request.

  • 20 Page MI. The Chemistry of β-Lactams   Page MI. Blackie; Glasgow: 1992.  p.79 
  • 21 Hadfield PS. Casey LA. Galt RH. Vilanova B. Page MI. ARKIVOC  2002,  (vi):  125 ; and references cited therein
  • 23 Grundmann C. Grünanger P. The Nitrile Oxide   Springer-Verlag; Heidelberg: 1971. 
22

CCDC-818258 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336 033; E-mail: .

24

Isopropylamine hydrochloride was prepared through bubbling gaseous HCl into a cool Et2O solution of isopropylamine. The solid hydrochloride separated from the cooled solution and was collected by filtration under reduced pressure. The dried salt was used for the synthesis of the N-isopropyl-2-azanorborn-5-ene (1C).