Synlett 2011(11): 1519-1522  
DOI: 10.1055/s-0030-1260777
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of 3,4-Bis(benzylidene)cyclobutenes

Rebecca R. Parkhurst, Timothy M. Swager*
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
Fax: +1(617)2537929; e-Mail: tswager@mit.edu;
Further Information

Publication History

Received 25 February 2011
Publication Date:
10 June 2011 (online)

Abstract

The syntheses of several derivatives of 3,4-bis(benzylidene)cyclobutene are reported. Previously unknown 1,2-dibromo-3,4-bis(benzylidene)cyclobutene was obtained through in situ generation of 1,6-diphenyl-3,4-dibromo-1,2,4,5-tetraene followed by electrocyclic ring closure. Ensuing reduction and metal-catalyzed cross-coupling provided additional derivatives. The effects of ring strain on the geometry and electronics of these derivatives were examined by X-ray crystallography and ¹H NMR spectroscopy, respectively.

    References and Notes

  • 1 Blomquist AT. Maitlis PM. Proc. Chem. Soc. (London)  1961,  332 
  • 2a Huntsman WD. Wristers HJ. J. Am. Chem. Soc.  1963,  85:  3308 
  • 2b Huntsman WD. Wristers HJ. J. Am. Chem. Soc.  1965,  89:  342 
  • 2c Coller BAW. Heffernan ML. Jones AJ. Aust. J. Chem.  1968,  21:  1807 
  • 2d Hopf H. Angew. Chem., Int. Ed. Engl.  1970,  9:  732 
  • 3 Toda F. Garratt P. Chem. Rev.  1992,  92:  1685 
  • 4 Braverman S. Suresh Kumar EVK. Cherkinsky M. Sprecher M. Goldberg I. Tetrahedron  2005,  61:  3547 
  • For examples of the use of 2, see:
  • 5a Toda F. Akagi K.
    J. Chem. Soc., Chem. Commun.  1970,  764 
  • 5b Toda F. Akagi K. Tetrahedron  1971,  27:  2801 
  • 5c Iyoda M. Kuwatami Y. Oda M. J. Am. Chem. Soc.  1989,  111:  3761 
  • 5d Toda F. Tanaka K. Sano I. Isozaki T. Angew. Chem.  1994,  106:  1856 
  • 5e Kuwatani Y. Yamamato G. Iyoda M. Org. Lett.  2003,  5:  3371 
  • 5f Kuwatani Y. Yamamoto G. Oda M. Iyoda M. Bull. Chem. Soc. Jpn.  2003,  5:  2188 
  • 6 Toda F. Kumada K. Ishiguro N. Akagi K. Bull. Chem. Soc. Jpn.  1970,  43:  3535 
  • 7 Toda F. J. Chem. Soc., Chem. Commun.  1969,  1219 
  • 8 Brandsma L. Synthesis of Acetylenes, Allenes and Cumulenes   Elsevier; Oxford: 2004.  p.235-265  
  • 9a Ulman A. Manassen J. J. Am. Chem. Soc.  1975,  97:  6540 
  • 9b Smith CD. Tchabanenko K. Adlington RM. Baldwin JE. Tetrahedron Lett.  2006,  47:  3209 
  • 10 Landor SR. Demetriou B. Evans RJ. Grzeskowiak R. Devey P. J. Chem. Soc., Perkin Trans. 2  1972,  1995 
  • 11 Jacobs TL. Brill WF. J. Am. Chem. Soc.  1953,  75:  1314 
  • 12a Kleveland K. Skattebøl L. J. Chem. Soc., Chem. Commun.  1973,  432 
  • 12b Pasto DJ. Yang S.-H. J. Org. Chem.  1989,  54:  3544 
  • 14 Toda F. Tanaka K. Tamashima T. Kato M. Angew. Chem. Int. Ed.  1998,  37:  2724 
  • 15 The distribution of isomers was determined by ¹H NMR
  • 18 Pasto DJ. Kong W. J. Org. Chem.  1989,  54:  4028 
  • 20 Roberts BW. Wissner A. J. Am. Chem Soc.  1972,  94:  7168 
  • For examples of this methodology in the synthesis of polycyclic aromatic compounds, see:
  • 21a Tovar JD. Swager TM. Adv. Mater.  2001,  13:  1775 
  • 21b Tovar JD. Rose A. Swager TM. J. Am. Chem. Soc.  2002,  124:  7762 
13

Dibromide 6 was found to rearrange to 5 (ca. 50%) and hydrolyze to 4 (ca. 50%) upon chromatography on silica gel and decomposed partially during recrystallization attempts.

16

Photolysis experiments were conducted in hexane using a Hg pen-lamp, without the use of optical filters.

17

Spartan B3LYP/6-31+g*, relative E (kcal/mol): 7 (in,out) = -0.4487, 7 (in,in) = 0, 7 (out,out) = 0.0056.

19

Attempts to purify compound 8 via column chromatography or recrystallization were unsuccessful due to its limited stability. Any impurities visible in Figure S1 are believed to be primarily high-molecular-weight decomposition products.