Synlett 2011(11): 1613-1617  
DOI: 10.1055/s-0030-1260788
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Preparation and Reactivity of Polystyrene-Supported Iodosylbenzene: Convenient Recyclable Oxidizing Reagent and Catalyst

Jiang-Min Chen*a,b, Xiao-Mei Zengb, Kyle Middletonb, Mekhman S. Yusubovc, Viktor V. Zhdankin*b
a College of Biological and Chemical Engineering, Jiaxing University, 56 South Yuexiu Rd, Jiaxing 314001, P. R. of China
e-Mail: chemcjm@yahoo.com.cn;
b Department of Chemistry and Biochemistry, University of Minnesota Duluth, 1039 University Dr., Duluth, MN 55812, USA
Fax: +1(218)7267394; e-Mail: vzhdanki@d.umn.edu;
c The Siberian State Medical University and The Tomsk Polytechnic University, 634050 Tomsk, Russia
Further Information

Publication History

Received 23 March 2011
Publication Date:
15 June 2011 (online)

Abstract

A facile preparation of novel polystyrene-supported iodosylbenzene (PS-ISB, loading of IO up to 1.50 mmol/g) from iodopolystyrene is described. This resin has been successfully used for efficient oxidation of a diverse collection of alcohols to aldehydes and ketones in the presence of BF3˙OEt2. PS-ISB can also be employed as efficient co-catalyst in combination with RuCl3 in the catalytic oxidation of alcohols and aromatic hydrocarbons, respectively, to corresponding carboxylic acids and ketones using Oxone as the stoichiometric oxidant.

    References and Notes

  • 1a Varvoglis A. Hypervalent Iodine in Organic Synthesis   Academic Press; London: 1997. 
  • 1b Hypervalent Iodine Chemistry   Wirth T. Springer; Berlin: 2003. 
  • 1c Koser GF. Aldrichimica Acta  2001,  34:  89 
  • 1d Koser GF. Adv. Heterocycl. Chem.  2004,  86:  225 
  • 1e Moriarty RM. J. Org. Chem.  2005,  70:  2893 
  • 1f Zhdankin VV. Stang PJ. Chem. Rev.  2008,  108:  5299 
  • 1g Ladziata U. Zhdankin VV. ARKIVOC  2006,  (ix):  26 
  • 1h Ciufolini MA. Braun NA. Canesi S. Ousmer M. Chang J. Chai D. Synthesis  2007,  3759 
  • 1i Zhdankin VV. Science of Synthesis   Vol. 31a:  Thieme; Stuttgart: 2007.  Chap. 31.4.1. p.161 
  • 1j Ochiai M. Miyamoto K. Eur. J. Org. Chem.  2008,  4229 
  • 1k Dohi T. Kita Y. Chem. Commun.  2009,  2073 
  • 1l Ladziata U. Zhdankin VV. Synlett  2007,  527 
  • 1m Quideau S. Pouysegu L. Deffieux D. Synlett  2008,  467 
  • 1n Yusubov MS. Zhdankin VV. Mendeleev Commun.  2010,  20:  185 
  • 1o Zhdankin VV. ARKIVOC  2009,  (i):  1 
  • 1p Uyanik M. Ishihara K. Chem. Commun.  2009,  2086 
  • 1q Ngatimin M. Lupton DW. Aust. J. Chem.  2010,  63:  653 
  • 1r Yusubov MS. Nemykin VN. Zhdankin VV. Tetrahedron  2010,  66:  5745 
  • 1s Satam V. Harad A. Rajule R. Pati H. Tetrahedron  2010,  66:  7659 
  • 1t Uyanik M. Ishihara K. Aldrichimica Acta  2010,  43:  83 
  • 1u Merritt EA. Olofsson B. Synthesis  2011,  517 
  • 1v Brand JP. Gonzalez DF. Nicolai S. Waser J. Chem. Commun.  2011,  47:  102 
  • 1w Zhdankin VV. J. Org. Chem.  2011,  76:  1185 
  • 2a Groves JT. Nemo TE. Myers RS. J. Am. Chem. Soc.  1979,  101:  1032 
  • 2b Cytochrome P450: Structure, Mechanism, and Biochemistry   Ortiz de Montellano PR. Kluwer Academic/Plenum Publishers; New York: 2005. 
  • 2c Metalloporphyrins in Catalytic Oxidations   Sheldon RA. Marcel Dekker; New York: 1994. 
  • 2d Rose E. Andrioletti B. Zrig S. Quelquejeu-Etheve M. Chem. Soc. Rev.  2005,  34:  573 
  • 2e Simonneaux G. Tagliatesta P. J. Porphyrins Phthalocyanines  2004,  8:  1166 
  • 2f Bernadou J. Meunier B. Adv. Synth. Catal.  2004,  346:  171 
  • 2g Vinhado FS. Martins PR. Iamamoto Y. Curr. Top. Catal.  2002,  3:  199 
  • 2h Meunier B. Robert A. Pratviel G. Bernadou J. The Porphyrin Handbook   Vol. 4:  Academic Press; San Diego: 2000.  p.119 
  • 2i Groves JT. Shalyaev K. Lee J. The Porphyrin Handbook   Vol. 4:  Academic Press; San Diego: 2000.  p.17 
  • 2j Moro-oka Y. Akita M. Catal. Today  1998,  41:  327 
  • 2k Noyori R. Asymmetric Catalysis in Organic Synthesis   Wiley; New York: 1994. 
  • 3a Moriarty RM. Kosmeder JW. Zhdankin VV. In Encyclopedia of Reagents for Organic Synthesis   Paquette LA. Wiley; Chichester: 2004. 
  • 3b Koposov AY. Netzel BC. Yusubov MS. Nemykin VN. Nazarenko AY. Zhdankin VV. Eur. J. Org. Chem.  2007,  4475 
  • 3c Nemykin VN. Koposov AY. Netzel BC. Yusubov MS. Zhdankin VV. Inorg. Chem.  2009,  48:  4908 
  • 4 An explosion of iodosylbenzene upon drying at elevated temperature in vacuum has recently been reported: McQuaid KM. Pettus TRR. Synlett  2004,  2403 
  • 5 Togo H. Sakuratani K. Synlett  2002,  1966 
  • 6a Chen JM. Huang X. Synthesis  2004,  2459 
  • 6b Chen JM. Huang X. Synthesis  2004,  1577 
  • 6c Chen JM. Wu LL. Huang X. Chin. Chem. Lett.  2004,  15:  1387 
  • 6d Chen J.-M. Zeng X.-M. Zhdankin VV. Synlett  2010,  2771 
  • 6e Chen J.-M. Zeng X.-M. Middleton K. Zhdankin VV. Tetrahedron Lett.  2011,  52:  1952 
  • 6f Chen JM. Huang X. Synlett  2004,  552 
  • 7a Togo H. Nogami G. Yokoyama M. Synlett  1998,  534 
  • 7b Togo H. Abe S. Nogami G. Yokoyama M. Bull. Chem. Soc. Jpn.  1999,  72:  2351 
  • 9a Yusubov MS. Wirth T. Org. Lett.  2005,  7:  519 
  • 9b Koposov AY. Netzel BC. Yusubov MS. Nemykin VN. Nazarenko AY. Zhdankin VV. Eur. J. Org. Chem.  2007,  4475 
  • 11 Geraskin IM. Pavlova O. Neu HM. Yusubov MS. Nemykin VN. Zhdankin VV. Adv. Synth. Catal.  2009,  351:  733 
  • 12 Yusubov MS. Zagulyaeva AA. Zhdankin VV. Chem. Eur. J.  2009,  15:  11091 
8

Preparation of PS-ISB (2) PS-DIB (1,7 1.430 g, 3.0 mmol) and NaOH (0.400 g, 10.0 mmol) were grinded intensively in a mortar at r.t. for 10 min. The resulting mixture was left to stay at r.t. for 2 h, then H2O (15 mL) was added and stirred overnight, the mixture was filtered, washed with H2O (3 × 3 mL), acetone (3 × 3 mL), and Et2O (3 × 3 mL) subsequently, and then dried in vacuum to give a yellow powder (1.05 g). Elem. Anal. (%): O, 8.68; I, 37.19. IR (KBr): ν = 761 (I=O) cm.

10

General Procedure for Oxidations Using PS-ISB (2)
To a vigorously stirred suspension of PS-ISB (2, 0.3 mmol) in CH2Cl2 (2 mL), BF3˙OEt2 (0.040 mL) was added, and the resulting mixture was stirred at r.t. for 15 min. To the mixture, the appropriate alcohol (0.2 mmol) or Ph3P (0.2 mmol) or anthracene (0.1 mmol) was added. The resulting mixture was stirred at r.t. for the indicated time (Table  [¹] ). A portion of the crude reaction mixture (100 µL) was poured into a flask with Et2O (0.5 mL) to precipitate PS-IB, then the mixture was passed through a 2-3 cm of silica gel suspended in a Pasteur pipette, and the resulting solution was analyzed by GC-MS to determine the conversion of organic substrates.

13

Typical Procedure of the PS-ISB/RuCl 3 -Cocatalyzed Oxidation of Alcohols Oxone (0.92 g, 1.5 mmol) was added to a mixture of 1-phenylethanol (122 mg, 1 mmol, Table  [²] , entry 7), PS-ISB (2, 0.070 g, 0.1 mmol, 10 mol%), and RuCl3 (10 µL of 0.20 M solution in H2O, 0.002 mmol, 0.2 mol%) in MeCN (3 mL) and H2O (3 mL) in one portions under stirring at r.t. (the reaction was monitored by TLC by the disappearance of 1-phenylethanol). Then EtOAc (15 mL) and H2O (20 mL) were added, and the mixture was stirred for 5 min. The polymeric catalyst (PS-ISB) was filtered, washed with H2O (2 × 2 mL) and EtOAc (2 × 2 mL), and collected for next run. The organic solution was separated, and the aqueous phase and extracted with EtOAc (2 × 15 mL). The organic solutions were combined, washed with NaCl (sat. solution, 20 mL), and dried over anhyd Na2SO4. Removal of the solvent under vacuum afforded acetophenone (114 mg, 95%). The oxidation of other alcohols and hydrocarbons (Table  [²] ) was performed by using a similar procedure.