Photodimerization of Arenediynes

Significance: Cyclic enediynes as well as terminal acyclic enediynes are well known to undergo photochemical $C^{1}-C^{6}$ cycloaromatization. The authors explored the reactivity of naphthalenyl-substituted arenediynes ($\mathbf{1}$ and $\mathbf{2}$). While the methoxysubstituted derivative $\mathbf{2}$ undergoes a photoBergman cyclization upon irradiation at 300 nm , $\mathbf{1}$ shows no formation of $C^{1}-C^{6}$ or $C^{1}-C^{5}$ under these conditions. Irradiation of $\mathbf{1}$ at 350 nm , however, yields a photodimerized product (4).
synfacts Contributors: Timothy M. Swager, Jan M. Schnorr Synfacts 2011, 10, 1077-1077 Published online: 20.09.2011 DOI: 10.1055/s-0030-1261210; Reg-No.: S10111SF

Comment: The tandem [2+2] photocyclization yields two products in a 4:1 ratio. The structure of the major product (4) was determined by X-ray crystallographic analysis. Based on NMR studies, the authors suggest that the minor product is a diastereomer of 4.

