Int J Sports Med 2010; 31(11): 784-789
DOI: 10.1055/s-0030-1262875
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Low Sampling Rates Bias Outcomes from the Wingate Test

E. L. Santos1 , J. S. Novaes2 , V. M. Reis3 , A. Giannella-Neto1
  • 1Federal University of Rio de Janeiro, Biomedical Engineering Program – COPPE, Rio de Janeiro, Brazil
  • 2Federal University of Rio de Janeiro, Graduate School of Physical Education, Rio de Janeiro, Brazil
  • 3UTAD, Sports, Vila Real, Portugal
Further Information

Publication History

accepted after revision July 10, 2010

Publication Date:
01 September 2010 (online)

Abstract

The purpose of this work was to apply a simple method for acquisition of power output (PO) during the Wingate Anaerobic Test (WAnT) at a high sampling rate (S R ) and to compare the effect of lower S R on the measurements extracted from the PO. 26 male subjects underwent 2 WAnTs on a cycle ergometer. The reference PO was calculated at 30 Hz as a function of the linear velocity, the moment of inertia and the frictional load. The PO was sampled at 0.2, 0.5, 1, 2 and 5 Hz. Both the peak (16.03±2.22 W·kg−1) and mean PO (10.34±1.01 W·kg−1) presented lower relative values when the S R was lower. Peak PO was attenuated by 0.29–42.07% for decreasing sampling rates, resulting in different values for 0.2 and 1 Hz (P<0.001). When the S R was 0.2 Hz, the time to peak was delayed by 53.81% (P<0.001) and the fatigue index was attenuated by 22.12% (P<0.001). In conclusion, due to the differences achieved here and the fact that the peak flywheel frequency is around 2.3 Hz, we strongly recommend that the PO be sampled at 5 Hz instead of 0.2 Hz in order to avoid biased errors and misunderstandings of the WAnT results.

References

  • 1 Armstrong N, Welsman JR, Chia MYH. Short term power output in relation to growth and maturation.  B J Sports Med. 2001;  35 118-124
  • 2 Bhambhani Y, Maikala R, Esmail S. Oxygenation trends in vastus lateralis muscle during incremental and intense anaerobic cycle exercise in young men and women.  Eur J Appl Physiol. 2001;  84 547-556
  • 3 Bar-Or O. The Wingate anaerobic test: an update on methodology, reliability and validity.  Sports Med. 1987;  4 381-394
  • 4 Bell W, Cobner DM. Effect of individual time to peak power output on the expression of peak power output in the 30-s Wingate Anaerobic Test.  Int J Sports Med. 2007;  28 135-139
  • 5 Bencke J, Damsgaard R, Saekmose A, Jørgensen P, Jørgensen K, Klausen K. Anaerobic power and muscle strength characteristics of 11 years old elite and non-elite boys and girls from gymnastics, team handball, tennis and swimming.  Scand J Med Sci Sports. 2002;  12 171-178
  • 6 Bogdanis GC, Papaspyrou A, Theos A, Maridaki M. Influence of resistive load on power output and fatigue during intermittent sprint cycling exercise in children.  Eur J Appl Physiol. 2007;  101 313-320
  • 7 Bulbulian R, Jeong JW, Murphy M. Comparison of anaerobic components of the Wingate and Critical Power tests in males and females.  Med Sci Sports Exerc. 1996;  28 1336-1341
  • 8 Burke LM, Pyne DB, Telford RD. Effect of oral creatine supplementation on single-effort sprint performance in elite swimmers.  Int J Sports Nutr. 1996;  6 222-233
  • 9 Calbet JAL, De Paz JA, Garatachea N, Cabeza de Vaca S, Chavarren J. Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists.  J Appl Physiol. 2003;  94 668-676
  • 10 Coleman SG, Hale T. The effect of different calculation methods of flywheel parameters on the Wingate Anaerobic Test.  Can J Appl Physiol. 1998;  23 409-417
  • 11 Cooper SM, Baker JS, Eaton ZE, Matthews N. A simple multistage field test for the prediction of anaerobic capacity in female games players.  Br J Sports Med. 2004;  38 784-789
  • 12 Coso JD, Mora-Rodríguez R. Validity of cycling peak power as measured by a short-sprint test versus the Wingate anaerobic test.  Appl Physiol Nut Metab. 2006;  31 186-189
  • 13 Di Prampero PE, Capelli C, Pagliaro P, Antonutto G, Girardis M, Zamparo P, Soule RG. Energetics of best performance in middle-distance running.  J Appl Physiol. 1993;  74 2318-2324
  • 14 Dupont G, Moalla W, Matran R, Berthoin S. Effect of short recovery intensities on the performance during two Wingate tests.  Med Sci Sports Exerc. 2007;  39 1170-1176
  • 15 Esbjörnsson-Liljedahl M, Sundberg CJ, Norman B, Jansson E. Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women.  J Appl Physiol. 1999;  87 1326-1332
  • 16 Gardner AS, Martin JC, Martin DT, Barras M, Jenkins DG. Maximal torque- and power-pedalling rate relationships for elite sprint cyclists in laboratory and field tests.  Eur J Appl Physiol. 2007;  101 287-292
  • 17 Gordon RS, Franklin KL, Baker JS, Davies B. Accurate assessment of the brake torque on a rope-braked cycle ergometer.  Sports Eng. 2004;  7 131-138
  • 18 Hamlin MJ, Marshall HC, Hellemans J, Ainslie PN, Anglem N. Effect of intermittent hypoxic training on 20 km time trial and 30 s anaerobic performance.  Scand J Med Sci Sports. 2009;  DOI: doi: 10.1111/j.1600-0838.2009.00946.x
  • 19 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 20 Hill DW, Smith JC. Gender difference in anaerobic capacity: role of aerobic contribution.  Br J Sports Med. 1993;  27 45-48
  • 21 Hoffman JR, Epstein S, Einbinder M, Weinstein Y. A comparison between the Wingate anaerobic power test to both vertical jump and line drill tests in basketball players.  J Strength Cond Res. 2000;  14 261-264
  • 22 Kovacs MS, Pritchett R, Wickwire PJ, Green JM, Bishop P. Physical performance changes after unsupervised training during the autumn/spring semester break in competitive tennis players.  Br J Sports Med. 2007;  41 705-710
  • 23 Lakomy HKA. Measurement of work and power output using friction-loaded cycle ergometers.  Ergonomics. 1986;  29 509-517
  • 24 Lakomy HKA. An indirect method for measuring the torque applied to friction-loaded cycle ergometers.  Ergonomics. 1993;  36 489-496
  • 25 MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS, Green HJ, Smith KM. Muscle performance and enzymatic adaptations to sprint interval training.  J Appl Physiol. 1998;  84 2138-2142
  • 26 MacIntosh BR, Bryan SN, Rishaug P, Norris SR. Evaluation of the Monark Wingate Ergometer by direct measurement of the resistance and velocity.  Can J Appl Physiol. 2001;  26 543-558
  • 27 Medbø JI, Tabata I. Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling.  J Appl Physiol. 1993;  75 1654-1660
  • 28 Micklewright D, Alkhatib A, Beneke R. Mechanically versus electro-magnetically braked cycle ergometer: performance and energy cost of the Wingate Anaerobic Test.  Eur J Appl Physiol. 2006;  96 748-751
  • 29 Reiser RF, Maines JM, Eisenmann JC, Wilkinson JG. Standing and seated Wingate protocols in human cycling. A comparison of standard parameters.  Eur J Appl Physiol. 2002;  88 152-157
  • 30 Reiser RF, Peterson ML, Broker JP. Influence of hip orientation on Wingate power output and cycling technique.  J Strength Cond Res. 2002;  16 556-560
  • 31 Rusko H, Nummela A, Mero A. A new method for the evaluation of anaerobic running power in athletes.  Eur J Appl Physiol. 1993;  66 97-101
  • 32 Smith JC, Hill DC. Contribution of energy systems during a Wingate power test.  Br J Sports Med. 1991;  25 196-199
  • 33 Van Praagh E, Doré E. Short-term muscle power during growth and maturation.  Sports Med. 2002;  32 701-728
  • 34 Whiters RT, Van Der Ploeg G, Finn JP. Oxygen deficits incurred during 45. 60. 75 and 90-s maximal cycling on an air-braked ergometer.  Eur J Appl Physiol. 1993;  67 185-191

Correspondence

Prof. Edil LuisSantos 

Federal University of Rio de Janeiro

Biomedical Engineering Program – COPPE

PO box 68510 Rio de Janeiro

21945-970 Rio de Janeiro

Brazil

Phone: +55/21/2562 8575

Fax: +55/21/2562 8591

Email: edil.luis@peb.ufrj.br

    >