Int J Sports Med 2010; 31(11): 803-809
DOI: 10.1055/s-0030-1262876
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Different Training Volumes Yield Equivalent Increases in BMD

R. A. Pierce1 , L. C. Lee1 , C. P. Ahles1 , S. M. Shdo1 , S. V. Jaque2 , K. D. Sumida1
  • 1Department of Biological Science, Chapman University, Orange, California, United States
  • 2Department of Kinesiology, California State University, Northridge, California, United States
Further Information

Publication History

accepted after revision July 10, 2010

Publication Date:
11 August 2010 (online)

Abstract

The purpose of this study was to determine if an exercise threshold existed in stimulating an elevation in bone mineral density (BMD), via resistance training, during the growth period in male rats. 27 male rats were randomly divided into ­Control (Con, n=9), 3 ladder climb resistance trained group (3LC, n=9), and 6 ladder climb resistance trained group (6LC, n=9). The 3LC and 6LC groups were conditioned to climb a vertical ladder with weights appended to their tail 3 days/wk for a total of 6 wks, but the 6LC group performed significantly more work than the 3LC group. After 6 weeks, left tibial BMD (mean±SD) was significantly greater for 3LC (0.225±0.006 g/cm2) and 6LC (0.234±0.008 g/cm2) when compared to Con (0.202±0.013 g/cm2). Further, bone strength (force to failure in Newtons) was significantly greater for 3LC (132.7±13.7) and 6LC (130.0±22.8) compared to Con (102.0±10.1). There was no significant difference in BMD or bone strength between 3LC and 6LC. The results indicate that both resistance training programs were equally effective in elevating BMD and bone strength in growing rats. These data suggest that during growth, there is a stimulation threshold where more work per exercise session is ineffective in promoting additional bone formation.

References

  • 1 Bradney M, Pearce G, Naughton G, Sullivan C, Bass S, Beck T, Carlson J, Seeman E. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study.  J Bone Min Res. 1998;  13 1814-1821
  • 2 Burger EH, Klein-Nulend J. Mechanotransduction in bone – role of the lacuno-canalicular network.  FASEB J. 1999;  13 (Suppl) S101-S112
  • 3 Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data.  J Bone Min Res. 1992;  7 137-145
  • 4 Danz AM, Zittermann A, Schiedermaier U, Klein K, Hotzel D, Schonau E. The effect of a specific strength-development exercise on bone mineral density in perimenopausal and postmenopausal women.  J Women Health. 1998;  7 701-709
  • 5 Fujimura R, Ashizawa N, Watanabe M, Mukai N, Amagai H, Fukubayashi T, Hayashi K, Tokuyama K, Suzuki M. Effect of resistance exercise training on bone formation and resorption in young male subjects assessed by biomarkers of bone metabolism.  J Bone Min Res. 1997;  12 656-662
  • 6 Godfrey JK, Kayser BD, Gomez GV, Bennett J, Jaque SV, Sumida KD. Interrupted resistance training and BMD in growing rats.  Int J Sports Med. 2009;  30 579-584
  • 7 Goettsch BM, Smith MZ, O’Brien JA, Gomez GV, Jaque SV, Sumida KD. Interrupted vs. uninterrupted training on BMD during growth.  Int J Sports Med. 2008;  29 980-986
  • 8 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 9 Hornberger TA, Farrar RP. Physiological hypertrophy of the FHL muscle following 8 weeks progressive resistance exercise in the rat.  Can J Appl Physiol. 2004;  29 16-31
  • 10 Huang TH, Lin SC, Chang FL, Hsieh SS, Liu SH, Yang RS. Effects of different exercise modes on mineralization, structure, and biochemical properties in growing bone.  J Appl Physiol. 2003;  95 300-307
  • 11 Iwamoto J, Yeh JK, Aloia JF. Effect of deconditioning on cortical and cancellous bone growth in the exercised trained young rats.  J Bone Min Res. 2000;  15 1842-1849
  • 12 Johnston CC, Hui SL, Wiske P, Norton JA, Epstein S. Bone mass at maturity and subsequent rates of loss as determinants of osteoporosis. In: DeLuca HF, (ed). Osteoporosis: Recent Advances in Pathogenesis and Treatment. University Park Press, Baltimore, MD; 1981: 285-291
  • 13 Kayser BD, Godfrey JK, Cunningham R, Pierce RA, Jaque SV, Sumida KD. Equal BMD after daily or triweekly exercise in growing rats.  Int J Sports Med. 2010;  31 44-50
  • 14 Lehtonen-Veromaa M, Mottonen T, Nuotio I, Heinonen OJ, Viikari J. Influence of physical activity on ultrasound and dual-energy X-ray absorptiometry bone measurements in peripubertal girls: a cross-sectional study.  Calcif Tissue Int. 2000;  66 248-254
  • 15 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent.  J Biol Chem. 1951;  193 265-275
  • 16 MacKelvie KJ, Petit MA, Khan KM, Beck TJ, McKay HA. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys.  Bone. 2004;  34 755-764
  • 17 Menkes A, Mazel S, Redmond RA, Koffler K, Libanati CR, Gundberg CM, Zizic TM, Hagberg JM, Pratley RE, Hurley BF. Strength training increases regional bone mineral density and bone remodeling in middle-aged and older men.  J Appl Physiol. 1993;  74 2478-2484
  • 18 Notomi T, Lee SJ, Okimoto N, Okazaki Y, Takamoto T, Nakamura T, Suzuki M. Effects of resistance exercise training on mass, strength, and turnover of bone in growing rats.  Eur J Appl Physiol. 2000;  82 268-274
  • 19 Notomi T, Okazaki Y, Okimoto N, Saitoh S, Nakamura T, Suzuki M. A comparison of resistance and aerobic training for mass, strength, and turn­over of bone in growing rats.  Eur J Appl Physiol. 2000;  83 469-474
  • 20 Notomi T, Okimoto N, Okazaki Y, Tanaka Y, Nakamura T, Suzuki M. Effects of tower climbing exercise on bone mass, strength, and turnover in growing rats.  J Bone Min Res. 2001;  16 166-174
  • 21 Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone.  J Exp Biol. 2001;  204 3389-3399
  • 22 Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads.  J Bone Joint Surg Am. 1984;  66 397-402
  • 23 Scerpella TA, Davenport M, Morganti CM, Kanaley JA, Johnson LM. Dose related association of impact activity and bone mineral density in pre-pubertal girls.  Calcif Tissue Int. 2003;  72 24-31
  • 24 Smith MZ, Goettsch BM, O’Brien JA, Van Ramshorst RD, Jaque SV, Sumida KD. Resistance training and bone mineral density during growth.  Int J Sports Med. 2008;  29 316-321
  • 25 Turner CH, Robling AG. Designing exercise regimens to increase bone strength.  Exerc Sport Sci Rev. 2003;  31 45-50
  • 26 Umemura Y, Sogo N, Honda A. Effects of intervals between jumps or bouts on osteogenic response to loading.  J Appl Physiol. 2002;  93 1345-1348
  • 27 Van Lagendonck L, Claessens AL, Vlietinck R, Derom C, Beunen G. Influence of weight-bearing exercises on bone acquisition in prepubertal monozygotic female twins: a randomized controlled prospective study.  Calcif Tissue Int. 2003;  72 666-674
  • 28 Welten DC, Kemper HCG, Post BG, Van Mechelen W, Twisk J, Lips P, Teule GJ. Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake.  J Bone Miner Res. 1994;  9 1089-1096
  • 29 Westerlind KC, Fluckey JD, Gordon SE, Kraemer WM, Farrell PA, Turner RT. Effect of resistance exercise training on cortical and cancellous bone in mature male rats.  J Appl Physiol. 1998;  84 459-464

Correspondence

Dr. Ken D. SumidaPhD 

Department of Biological Science

Chapman University

One University Drive

92866 Orange

United States

Phone: +1/714/997 6995

Fax: +1/714/532 6048

Email: sumida@chapman.edu

    >