Horm Metab Res 2011; 43(2): 135-140
DOI: 10.1055/s-0030-1269900
Humans, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Different Circulating Ghrelin Responses to Isoglucidic Snack Food in Healthy Individuals

S. Benedini1 , R. Codella1 , A. Caumo2 , F. Marangoni3 , L. Luzi1 , 2
  • 1Department of Sport, Nutrition and Health Sciences, University of Milan, Milan, Italy
  • 2Internal Medicine, Section of Nutrition/Metabolism, H San Raffaele Scientific Institute, Milan, Italy
  • 3Nutrition Foundation of Italy (NFI), Milan, Italy
Further Information

Publication History

received 23.07.2010

accepted 22.11.2010

Publication Date:
10 January 2011 (online)

Abstract

The last decade has seen much debate on ghrelin as a potential target for treating obesity. Despite a close connection between snack food intake and obesity, snacking is controversially reviewed as a good habit in a healthy nutritional regimen. The aim of the study was to evaluate whether a different nutrient composition influences postprandial ghrelin levels and glucose increments induced by 6 isoglucidic snack food. 20 healthy individuals (10 M/10 F; BMI 23.1±0.5; age 33±0.67 years, mean and SE) from H San Raffaele Scientific Institute and Milan University were enrolled. The subjects underwent OGTT (50 g) and 6 isoglucidic test-meal loads to assess the ghrelin circulating levels and the area under glycemic curves induced by 6 commercial snacks. 3 h after hazelnut chocolate intake, ghrelin was significantly lower than with wafer chocolate intake (p<0.002). As a response to all snacks, the glycemic curves were not different even though hazelnut chocolate showed the lowest glycemic curve. Moreover, snack fat content was found to be inversely correlated to 3-h plasma ghrelin levels (p<0.0001; R2=0.77) and positively associated with satiety scores (p<0.02; R2=0.28). Also energy load was inversely correlated to 3-h plasma ghrelin (p<0.0001; R2=0.73). Our results indicate that snack food administered in equivalent glucidic loads elicits postprandial ghrelin suppression and satiety ratings in different ways. Further studies are needed to elucidate the role of ghrelin as hunger-hormone in the regulation of energy balance.

References

  • 1 Jahns L, Siega-Riz AM, Popkin BM. The increasing prevalence of snacking among US children from 1977 to 1996.  J Pediatr. 2001;  138 493-498
  • 2 Willett W, Manson J, Liu S. Glycemic index, glycemic load, and risk of type 2 diabetes.  Am J Clin Nutr. 2002;  76 S274-S280
  • 3 Ludwig DS. The glycemic index: physiological mechanisms relating to obe­sity, diabetes, and cardiovascular disease.  JAMA. 2002;  287 2414-2423
  • 4 Ludwig DS, Peterson KE, Gortmaker SL. Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis.  Lancet. 2001;  357 505-508
  • 5 Cali AM, Caprio S. Obesity in children and adolescents.  J Clin Endocrinol Metab. 2008;  93 S31-S36
  • 6 Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the United States, 1999–2004.  JAMA. 2006;  295 1549-1555
  • 7 Lewis CE, Smith DE, Wallace DD, Williams OD, Bild DE, Jacobs Jr DR. Seven-year trends in body weight and associations with lifestyle and behavioral characteristics in black and white young adults: the CARDIA study.  Am J Public Health. 1997;  87 635-642
  • 8 Phillips SM, Bandini LG, Naumova EN, Cyr II, Colclough S, Dietz WH, Must A. Energy-dense snack food intake in adolescence: longitudinal relationship to weight and fatness.  Obes Res. 2004;  12 461-472
  • 9 Zizza C, Siega-Riz AM, Popkin BM. Significant increase in young adults’ snacking between 1977–1978 and 1994–1996 represents a cause for concern!.  Prev Med. 2001;  32 303-310
  • 10 Willett WC, Leibel RL. Dietary fat is not a major determinant of body fat.  Am J Med. 2002;  113 (S 09) S47-S59
  • 11 Berkey CS, Rockett HR, Field AE, Gillman MW, Frazier AL, Camargo CA Jr, Colditz GA. Activity, dietary intake, and weight changes in a longitudinal study of preadolescent and adolescent boys and girls.  Pediatrics. 2000;  105 E56
  • 12 Francis LA, Lee Y, Birch LL. Parental weight status and girls’ television viewing, snacking, and body mass indexes.  Obes Res. 2003;  11 143-151
  • 13 Smit HJ, Gaffan EA, Rogers PJ. Methylxanthines are the psycho-pharmacologically active constituents of chocolate.  Psychopharmacology (Berl). 2004;  176 412-419
  • 14 Matsui N, Ito R, Nishimura E, Yoshikawa M, Kato M, Kamei M, Shibata H, Matsumoto I, Abe K, Hashizume S. Ingested cocoa can prevent high-fat diet-induced obesity by regulating the expression of genes for fatty acid metabolism.  Nutrition. 2005;  21 594-601
  • 15 http://www.iotf.org/
  • 16 Gibson SA. Are high-fat, high-sugar food and diets conducive to obe­sity?.  Int J Food Sci Nutr. 1996;  47 405-415
  • 17 Pawlak DB, Kushner JA, Ludwig DS. Effects of dietary glycaemic index on adiposity, glucose homoeostasis, and plasma lipids in animals.  Lancet. 2004;  364 778-785
  • 18 Roberts SB. High-glycemic index food, hunger, and obesity: is there a connection?.  Nutr Rev. 2000;  58 163-169
  • 19 Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M. Ghrelin, a Novel Growth Hormone-Releasing Acylated Peptide, Is Synthesized in a Distinct Endocrine Cell Type in the Gastrointestinal Tracts of Rats and Humans.  Endocrinology. 2000;  141 4255-4261
  • 20 Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents.  Nature. 2000;  407 908-913
  • 21 Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach.  Nature. 1999;  402 656-660
  • 22 Shiiya T, Nakazato M, Mizuta M, Date Y, Mondal MS, Tanaka M, Nozoe S, Hosoda H, Kangawa K, Matsukura S. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion.  J Clin Endocrinol Metab. 2002;  87 240-244
  • 23 Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans.  Diabetes. 2001;  50 1714-1719
  • 24 Ariyasu H, Takaya K, Tagami T, Ogawa Y, Hosoda K, Akamizu T, Suda M, Koh T, Natsui K, Toyooka S, Shirakami G, Usui T, Shimatsu A, Doi K, Hosoda H, Kojima M, Kangawa K, Nakao K. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans.  J Clin Endocrinol Metab. 2001;  86 4753-4758
  • 25 Bellone S, Rapa A, Vivenza D, Castellino N, Petri A, Bellone J, Me E, Broglio F, Prodam F, Ghigo F, Bona G. Circulating ghrelin levels as function of gender, pubertal status and adiposity in childhood.  J Endocrinol Invest. 2002;  25 RC13-RC15
  • 26 Horvath TL, Diano S, Sotonyi P, Heiman M, Tschop M. Minireview: ghrelin and the regulation of energy balance – a hypothalamic perspective.  Endocrinology. 2001;  142 4163-4169
  • 27 Tschöp M, Wawarta R, Riepl RL, Friedrich S, Bidlingmaier M, Landgraf R, Folwaczny C. Post-prandial decrease of circulating human ghrelin levels.  J Endocrinol Invest. 2001;  24 RC19-RC21
  • 28 Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Oikawa S. Regulation of the ghrelin gene: growth hormone-releasing hormone upregulates ghrelin mRNA in the pituitary.  Endocrinology. 2001;  142 4154-4157
  • 29 Perseghin G, Scifo P, De Cobelli F, Pagliato E, Battezzati A, Arcelloni C, Vanzulli A, Testolin G, Pozza G, Del Maschio A, Luzi L. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents.  Diabetes. 1999;  48 1600-1606
  • 30 Flint A, Raben A, Blundell JE, Astrup A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies.  Int J Obes Relat Metab Disord. 2000;  24 38-48
  • 31 Bland JM, Altman DG. Calculating correlation coefficients with repeated observations: Part 1–Correlation within subjects.  BMJ. 1995;  310 446
  • 32 Monteleone P, Bencivenga R, Longobardi N, Serritella C, Maj M. Differential responses of circulating ghrelin to high-fat or high-carbohydrate meal in healthy women.  J Clin Endocrinol Metab. 2003;  88 5510-5514
  • 33 Joannic JL, Auboiron S, Raison J, Basdevant A, Bornet F, Guy-Grand B. How the degree of unsaturation of dietary fatty acids influences the glucose and insulin responses to different carbohydrates in mixed meals.  Am J Clin Nutr. 1997;  65 1427-1433
  • 34 Pirola L, Johnston AM, Van Obberghen E. Modulation of insulin action.  Diabetologia. 2004;  47 170-184
  • 35 Schaller G, Schmidt A, Pleiner J, Woloszczuk W, Wolzt M, Luger A. Plasma ghrelin concentrations are not regulated by glucose or insulin: a double-blind, placebo-controlled crossover clamp study.  Diabetes. 2003;  52 16-20
  • 36 Caixas A, Bashore C, Nash W, Pi-Sunyer F, Laferrere B. Insulin, unlike food intake, does not suppress ghrelin in human subjects.  J Clin Endocrinol Metab. 2002;  87 1902
  • 37 Lomenick JP, Melguizo MS, Mitchell SL, Summar ML, Anderson JW. Effects of meals high in carbohydrate, protein, and fat on ghrelin and peptide YY secretion in prepubertal children.  J Clin Endocrinol Metab. 2009;  94 4463-4471
  • 38 Clément K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougnères P, Lebouc Y, Froguel P, Guy-Grand B. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction.  Nature. 1998;  392 398-401

Correspondence

L. LuziMD 

University of Milan

Faculty of Exercise Sciences

4/A Kramer

20129 Milan

Italy

Phone: +39/02/503 15154

Fax: +39/02/503 15152

Email: livio.luzi@unimi.it

    >