Planta Med 2011; 77(15): 1702-1706
DOI: 10.1055/s-0030-1271084
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

In Vitro Effect of Valepotriates Isolated from Valeriana glechomifolia on Rat P-Type ATPases

Gustavo M. Bettero1 [*] , Luisa Salles2 , 3 [*] , Renata M. Rosário Figueira1 , Gilsane von Poser2 , Stela M. K. Rates3 , François Noël1 , Luis E. M. Quintas1
  • 1Laboratório de Farmacologia Bioquímica e Molecular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
  • 2Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
  • 3Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Further Information

Publication History

received Nov. 1, 2010 revised April 9, 2011

accepted April 14, 2011

Publication Date:
12 May 2011 (online)

Abstract

Valepotriates are iridoids found in variable amounts in Valerianaceae and might be among the bioactive compounds which confer anxiolytic properties to the Valeriana species. On the other hand, unspecific cytotoxicity has also been described. Presently, however, no particular molecular target has been defined for these compounds. Here we studied the effect of valtrate, acevaltrate, and 1-β-acevaltrate isolated from Valeriana glechomifolia on the enzymatic activity of rat P-type ATPases. Valepotriates did not affect rat skeletal muscle sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity at the highest concentration used (100 µM). In contrast, the same concentration inhibited roughly half of the total H+/K+-ATPase activity from rat gastric epithelium (valtrate 54.6 ± 3.2 %, acevaltrate 60.7 ± 7.3 %, 1-β-acevaltrate 50.2 ± 3.1 %; mean ± SEM, n = 3–5). Finally, these substances showed the highest inhibitory potency toward Na+/K+-ATPase, and the inhibition curves obtained provided a similar IC50 (in µM) for rat kidney α1 isoform (valtrate 21.2, acevaltrate 22.8, 1-β-acevaltrate 24.4) and brain hemispheres α2/α3 isoforms (valtrate 19.4, acevaltrate 42.3, 1-β-acevaltrate 38.3). Our results suggest that P-type ATPases are differentially inhibited by valepotriates and that Na+/K+-ATPase might be one of their molecular targets in vivo.

Supporting Information

References

  • 1 Yatime L, Buch-Pedersen M J, Musgaard M, Morth J P, Lund Winther A M, Pedersen B P, Olesen C, Andersen J P, Vilsen B, Schiøtt B, Palmgren M G, Møller J V, Nissen P, Fedosova N. P-type ATPases as drug targets: tools for medicine and science.  Biochim Biophys Acta. 2009;  1787 207-220
  • 2 Axelsen K B, Palmgren M G. Evolution of substrate specificities in the P-type ATPase superfamily.  J Mol Evol. 1998;  46 84-101
  • 3 Thever M D, Saier Jr. M H. Bioinformatic characterization of P-type ATPases encoded within the fully sequenced genomes of 26 eukaryotes.  J Membr Biol. 2009;  229 115-130
  • 4 Goldstein I, Levy T, Galili D, Ovadia H, Yirmiya R, Rosen H, Lichtstein D. Involvement of Na+,K+-ATPase and endogenous digitalis-like compounds in depressive disorders.  Biol Psychiatry. 2006;  60 491-499
  • 5 Moseley A E, Williams M T, Schaefer T L, Bohanan C S, Neumann J C, Behbehani M M, Vorhees C V, Lingrel J B. Deficiency in Na,K-ATPase α isoform genes alters spatial learning, motor activity, and anxiety in mice.  J Neurochem. 2007;  27 616-626
  • 6 Wink M. Evolutionary advantage and molecular modes of action of multi-component mixtures used in phytomedicine.  Curr Drug Metab. 2008;  9 996-1009
  • 7 Ngamrojnavanich N, Sirimongkon S, Roengsumran S, Petsom A, Kamimura H. Inhibition of Na+,K+-ATPase activity by (−)-ent-kaur-16-en-19-oic acid and its derivatives.  Planta Med. 2003;  69 555-556
  • 8 Garcia D G, Bianco E M, Santos Mda C, Pereira R C, Faria M V, Teixeira V L, Burth P. Inhibition of mammal Na+,K+-ATPase by diterpenes extracted from the Brazilian brown alga Dictyota cervicornis.  Phytother Res. 2009;  23 943-947
  • 9 Inesi G, Hua S, Xu C, Ma H, Seth M, Prasad A M, Sumbilla C. Studies of Ca2+-ATPase (SERCA) inhibition.  J Bioenerg Biomembr. 2005;  37 365-368
  • 10 Lin S, Shen Y H, Li H L, Yang X W, Chen T, Lu L H, Huang Z S, Liu R H, Xu X K, Zhang W D, Wang H. Acylated iridoids with cytotoxicity from Valeriana jatamansi.  J Nat Prod. 2009;  72 650-655
  • 11 World Health Organization .WHO monographs on selected medicinal plants. Malta: WHO Graphics; 1999
  • 12 Salles L A, Silva A L, Rech S B, Zanatta N, von Poser G L. Constituents of Valeriana glechomifolia Meyer.  Biochem Syst Ecol. 2000;  28 907-910
  • 13 Silva A L, Rech S B, von Poser G L. Quantitative determination of valepotriates from Valeriana native to South Brazil.  Planta Med. 2002;  68 570-572
  • 14 Bos R, Woerdenbag H J, Pras N. Determination of valepotriates.  J Chromatogr A. 2002;  967 131-146
  • 15 Andreatini R, Leite J R. Effect of valepotriates on the behavior of rats in the elevated plus-maze during diazepam withdrawal.  Eur J Pharmacol. 1994;  260 233-235
  • 16 Maurmann N, Reolon G K, Rech S B, Fett-Neto A G, Roesler R. A valepotriate fraction of Valeriana glechomifolia shows sedative and anxiolytic properties and impairs recognition but not aversive memory in mice.  Evid Based Complement Alternat Med. advance online publication 2010;  DOI: 10.1093/ecam/nep232
  • 17 Bounthanh C, Richert L, Beck J P, Haag-Berrurier M, Anton R. The action of valepotriates on the synthesis of DNA and proteins of cultured hepatoma cells.  Planta Med. 1983;  49 138-142
  • 18 Bounthanh C, Bergmann C, Beck J P, Haag-Berrurier M, Anton R. Valepotriates, a new class of cytotoxic and antitumor agents.  Planta Med. 1981;  41 21-28
  • 19 Noël F, Godfraind T. Heterogeneity of ouabain specific binding sites and (Na+ + K+)-ATPase inhibition in microsomes from rat heart.  Biochem Pharmacol. 1984;  33 47-53
  • 20 Lowry O H, Rosenbrough N J, Farr A L, Randall R J. Protein measurement with the Folin phenol reagent.  J Biol Chem. 1951;  193 265-275
  • 21 Scaramello C B, Cunha V M, Rodriguez J B, Noël F. Characterization of subcellular fractions and distribution profiles of transport components involved in Ca2+ homeostasis in rat vas deferens.  J Pharmacol Toxicol Methods. 2002;  47 93-98
  • 22 Tomiyama Y, Morii M, Takeguchi N. Specific proton pump inhibitors E3810 and lansoprazole affect the recovery process of gastric secretion in rats differently.  Biochem Pharmacol. 1994;  48 2049-2055
  • 23 Fiske C H, Subbarow Y. The colorimetric determination of phosphorus.  J Biol Chem. 1925;  66 375-392
  • 24 Quintas L E M, Lopez L B, Souccar C, Noël F. Na+/K+-ATPase density is sexually dimorphic in the adult rat kidney.  Ann NY Acad Sci. 1997;  834 552-554
  • 25 Pôças E S C, Touza N A, Pimenta P H, Leitão F B, Neto C D, da Silva A J, Costa P R, Noël F. Insights into the mechanism of Na+,K+-ATPase inhibition by 2-methoxy-3,8,9-trihydroxy coumestan.  Bioorg Med Chem. 2008;  16 8801-8805
  • 26 Andreatini R, Sartori V A, Seabra M L, Leite J R. Effect of valepotriates (valerian extract) in generalized anxiety disorder: a randomized placebo-controlled pilot study.  Phytother Res. 2002;  16 650-654
  • 27 Mercer R W. Structure of the Na,K-ATPase.  Int Rev Cytol. 1993;  137 C 139-168
  • 28 Sverdlov E D. The genes of Na,K-ATPase, a selfreview.  Genetica. 1991;  85 91-101
  • 29 Carfagna M A, Muhoberac B B. Interaction of tricyclic drug analogs with synaptic plasma membranes: structure-mechanism relationships in inhibition of neuronal Na+/K+-ATPase activity.  Mol Pharmacol. 1993;  44 129-141
  • 30 Zanatta L M, Nascimento F C, Barros S V, Silva G R, Zugno A I, Netto C A, Wyse A T. In vivo and in vitro effect of imipramine and fluoxetine on Na+,K+-ATPase activity in synaptic plasma membranes from the cerebral cortex of rats.  Braz J Med Biol Res. 2001;  34 1265-1269
  • 31 Keochanthala-Bounthanh C, Haag-Berrurier M, Beck J P, Anton R. Effects of thiol compounds versus the cytotoxicity of valepotriates on cultured hepatoma cells.  Planta Med. 1990;  56 190-192
  • 32 Paula S, Ball Jr. W J. Molecular determinants of thapsigargin binding by SERCA Ca2+-ATPase: a computational docking study.  Proteins. 2004;  56 595-606
  • 33 Singh P, Mhaka A M, Christensen S B, Gray J J, Denmeade S R, Isaacs J T. Applying linear interaction energy method for rational design of noncompetitive allosteric inhibitors of the sarco- and endoplasmic reticulum calcium-ATPase.  J Med Chem. 2005;  48 3005-3014
  • 34 Müller W E, Singer A, Wonnemann M, Hafner U, Rolli M, Schäfer C. Hyperforin represents the neurotransmitter reuptake inhibiting constituent of hypericum extract.  Pharmacopsychiatry. 1998;  31 (Suppl. 1) 16-21
  • 35 Li S, Stys P K. Na+-K+-ATPase inhibition and depolarization induce glutamate release via reverse Na+-dependent transport in spinal cord white matter.  Neuroscience. 2001;  107 675-683
  • 36 Hobbs C. Valerian: a literature review.  Herbal Gram. 1989;  21 19-34
  • 37 Pôças E S C, Costa P R, da Silva A J, Noël F. 2-Methoxy-3,8,9-trihydroxy coumestan: a new synthetic inhibitor of Na+,K+-ATPase with an original mechanism of action.  Biochem Pharmacol. 2003;  66 2169-2176

1 These authors equally contributed to this work.

Prof. Dr. Luis Eduardo M. Quintas

Laboratório de Farmacologia Bioquímica e Molecular
Instituto de Ciências Biomédicas
Universidade Federal do Rio de Janeiro

Av. Carlos Chagas Filho 373

Bloco J, sala J-17, CCS

21941-902, Rio de Janeiro

Brazil

Phone: +55 21 25 62 67 32

Email: lquintas@farmaco.ufrj.br

>