Planta Med 2011; 77(16): 1822-1828
DOI: 10.1055/s-0030-1271104
Natural Product Chemistry
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Imbricatolic Acid from Juniperus communis L. Prevents Cell Cycle Progression in CaLu-6 Cells

Simona De Marino1 [*] , Fabio Cattaneo2 [*] , Carmen Festa1 , Franco Zollo1 , Annalisa Iaccio2 , Rosario Ammendola2 , Filomena Incollingo3 , Maria Iorizzi3
  • 1Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Napoli, Italy
  • 2Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
  • 3Dipartimento di Scienze e Tecnologie per l'Ambiente e il Territorio, Università degli Studi del Molise, Pesche (Isernia), Italy
Further Information

Publication History

received July 22, 2010 revised April 4, 2011

accepted April 18, 2011

Publication Date:
12 May 2011 (online)

Abstract

Imbricatolic acid was isolated from the methanolic extract of the fresh ripe berries of Juniperus communis (Cupressaceae) together with sixteen known compounds and a new dihydrobenzofuran lignan glycoside named juniperoside A. Their structures were determined by spectroscopic methods and by comparison with the spectral data reported in literature.

Imbricatolic acid was evaluated for its ability to prevent cell cycle progression in p53-null CaLu-6 cells. This compound induces the upregulation of cyclin-dependent kinase inhibitors and their accumulation in the G1 phase of the cell cycle, as well as the degradation of cyclins A, D1, and E1. Furthermore, no significant imbricatolic acid-induced apoptosis was observed. Therefore, this plant-derived compound may play a role in the control of cell cycle.

Supporting Information

References

  • 1 Kwon H J, Hong Y K, Park C, Choi Y H, Yun H J, Lee E W, Kim B W. Widdrol induces cell cycle arrest, associated with MCM down-regulation, in human colon adenocarcinoma cells.  Cancer Lett. 2010;  290 96-103
  • 2 Angioni A, Barra A, Russo M T, Coroneo V, Dessi S, Cabras P. Chemical composition of the essential oils of Juniperus from ripe and unripe berries and leaves and their antimicrobial activity.  J Agric Food Chem. 2003;  51 3073-3078
  • 3 Filipowicz N, Kaminski M, Kurlenda J, Asztemborska M, Ochocka J R. Antibacterial and antifungal activity of juniper berry oil and its selected components.  Phytother Res. 2003;  17 227-231
  • 4 Nakanishi T, Iida N, Inatomi Y, Murata H, Inada A, Murata J, Lang F A, Iinuma M, Tanaka T, Sakagami Y. A monoterpene glucoside and three megastigmane glycosides from Juniperus communis var. depressa.  Chem Pharm Bull. 2005;  53 783-787
  • 5 Martin A M, Queiroz E F, Marston A, Hostettmann K. Labdane diterpenes from Juniperus communis L. berries.  Phytochem Anal. 2006;  17 32-35
  • 6 Innocenti M, Michelozzi M, Giaccherini C, Ieri F, Vincieri F F, Mulinacci N. Flavonoids and biflavonoids in Tuscan berries of Juniperus communis L.: detection and quantitation by HPLC/DAD/ESI/MS.  J Agric Food Chem. 2007;  55 6596-6602
  • 7 Demetzos C, Dimas K. Labdane-type diterpenes: chemistry and biological activity. In: Atta-Ur-Rahman, ed. Studies in natural products chemistry of bioactive natural products. Vol. 25 Oxford: Elsevier Science; 2001: 235-292
  • 8 Dimas K, Papadaki M, Tsimplouli C, Hatziantoniou S, Alevizopoulos K, Pantazis P, Demetzos C. Labd-14-ene-8,13-diol (sclareol) induces cell cycle arrest and apoptosis in human breast cancer cells and enhances the activity of anticancer drugs.  Biomed Pharmacother. 2006;  60 127-133
  • 9 Sherr C J, Roberts J M. CDK inhibitors: positive and negative regulators of G1-phase progression.  Genes Dev. 1999;  13 1501-1512
  • 10 Besson A, Dowdy S F, Roberts J M. CDK inhibitors: cell cycle regulators and beyond.  Dev Cell. 2008;  14 159-169
  • 11 Kupchan S M, Britton R W, Ziegler M F, Sigel C W. Bruceantin, a new potent antileukemic simaroubolide from Brucea antidysenterica.  J Org Chem. 1973;  38 178-179
  • 12 Hara S, Okabe H, Mihashi K. Gas-liquid chromatographic separation of aldose enantiomers as trimethylsilyl ethers of methyl 2-(polyhydroxyalkyl)-thiazolidine-4-(R) carboxylates.  Chem Pharm Bull. 1987;  35 501-506
  • 13 Iaccio A, Collinet C, Montesano Gesualdi N, Ammendola R. Protein kinase C-alpha and -delta are required for NADPH oxidase activation in WKYMVm-stimulated IMR90 human fibroblasts.  Arch Biochem Biophys. 2007;  459 288-294
  • 14 Romano S, D'Angelillo A, Pacelli R, Staibano S, De Luna E, Bisogni R, Eskelinen E L, Mascolo M, Calì G, Arra C, Romano M F. Role of FK506-binding protein 51 in the control of apoptosis of irradiated melanoma cells.  Cell Death Differ. 2010;  17 145-157
  • 15 Fang J M, Chen Y C, Wang B W, Cheng Y S. Terpenes from hearthwood of Juniperus chinensis.  Phytochemistry. 1996;  41 1361-1365
  • 16 Su W C, Fang J M, Cheng Y S. Labdanes from Cryptomeria japonica.  Phytochemistry. 1994;  37 1109-1114
  • 17 Garbarino J A, Oyarzun M, Gambaro V. Labdane diterpenes from Araucari araucana.  J Nat Prod. 1987;  50 935-936
  • 18 Su W C, Fang J M, Cheng Y S. Diterpenoids from leaves of Cryptomeria japonica.  Phytochemistry. 1996;  41 255-261
  • 19 San Feliciano A, Medarde M, Lopez J L, Del Corral M, Puebla P, Barrero A F. Terpenoids from leaves of Juniperus thurifera.  Phytochemistry. 1988;  27 2241-2248
  • 20 Hasegawa S, Hirose Y. A diterpene glycoside and lignans from seed of Thujopsis dolabrata.  Phytochemistry. 1980;  19 2479-2481
  • 21 Sakar M K, Er N, Ercil D, Del Olmo E, San Feliciano A. (−)-Desoxypodophyllotoxin and diterpenoids from Juniperus nana Willd. berries.  Acta Pharm Turcica. 2002;  44 213-219
  • 22 Fang J M, Sou Y C, Chiu Y H, Cheng Y S. Diterpenes from the bark of Juniperus chinensis.  Phytochemistry. 1993;  34 1581-1584
  • 23 De Pascual T J, Barrero A F, Muriel L, San Feliciano A, Grande M. New natural diterpene acids from Juniperus communis.  Phytochemistry. 1980;  19 1153-1156
  • 24 Herz W, Watanabe K. Sesquiterpene alcohols and triterpenoids from Liatris microcephala.  Phytochemistry. 1983;  22 1457-1459
  • 25 Estevez-Braun A, Estevez-Reyes R, Gonzalez A G. 13C NMR assignments of some dibenzyl-γ-butyrolactone lignans.  Phytochemistry. 1996;  43 885-886
  • 26 Kizu H, Shimana H, Tomimori T. Studies on the constituents of Clematis species. The constituents of Clematis stans SIEB. et ZUCC.  Chem Pharm Bull. 1995;  43 2187-2194
  • 27 Lehman T A, Bennett W P, Metcalf R A, Welsh J A, Ecker J, Modali R V, Ullrich S, Romano J W, Appella E, Testa J R, Gerwin B I, Harris C C. p 53 mutations, ras mutations, and p 53-heat shock 70 protein complexes in human lung carcinoma cell lines.  Cancer Res. 1991;  51 4090-4096
  • 28 Serrano M, Lin A W, McCurrach M E, Beach D, Lowe S W. Oncogenic ras provokes premature cell senescence associated with accumulation of p 53 and p 16INK4a.  Cell. 1997;  88 593-602
  • 29 Groth A, Weber J D, Willumsen B M, Sherr C J, Roussel M F. Oncogenic Ras induces p 19ARF and growth arrest in mouse embryo fibroblasts lacking p 21Cip1 and p 27Kip1 without activating cyclin D-dependent kinases.  J Biol Chem. 2000;  275 27473-27480
  • 30 Roper E, Weinberg W, Watt F M, Land H. p 19ARF-independent induction of p 53 and cell cycle arrest by Raf in murine keratinocytes.  EMBO Rep. 2001;  2 145-150
  • 31 Olsen C L, Gardie B, Yaswen P, Stampfer M R. Raf-1-induced growth arrest in human mammary epithelial cells is p 16-independent and is overcome in immortal cells during conversion.  Oncogene. 2002;  21 6328-6339
  • 32 Esposito F, Cuccovillo F, Vanoni M, Cimino F, Anderson C W, Appella E, Russo T. Redox-mediated regulation of p 21(waf1/cip1) expression involves a post-transcriptional mechanism and activation of the mitogen-activated protein kinase pathway.  Eur J Biochem. 1997;  245 730-737
  • 33 Park J W, Jang M A, Lee Y H, Passaniti A, Kwon T K. p 53-independent elevation of p 21 expression by PMA results from PKC-mediated mRNA stabilization.  Biochem Biophys Res Commun. 2001;  280 244-280
  • 34 Ryu M S, Lee M S, Hong J W, Hahn T R, Moon E, Lim I K. TIS21/BTG2/PC3 is expressed through PKC-delta pathway and inhibits binding of cyclin B1-Cdc2 and its activity, independent of p 53 expression.  Exp Cell Res. 2004;  299 159-170
  • 35 Sheppard F R, Kelher M R, Moore E E, McLaughlin N J, Banerjee A, Silliman C C. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation.  J Leukoc Biol. 2005;  78 1025-1042

1 These authors contributed equally to this work.

Prof. Maria Iorizzi

Dipartimento di Scienze e Tecnologie per l'Ambiente e il Territorio (DiSTAT)
Università degli Studi del Molise

Contrada Fonte Lappone

86090 Pesche (Isernia)

Italy

Phone: +39 08 74 40 41 00

Fax: +39 08 74 40 41 23

Email: iorizzi@unimol.it

>