Semin Liver Dis 2011; 31(1): 011-032
DOI: 10.1055/s-0031-1272832
© Thieme Medical Publishers

Epithelial–Mesenchymal Interactions in Biliary Diseases

Luca Fabris1 , 2 , Mario Strazzabosco2 , 3 , 4
  • 1Department of Surgical and Gastroenterological Sciences, University of Padua, Padova, Italy
  • 2Center for Liver Research (CeLiveR), Bergamo, Italy
  • 3Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut
  • 4Department of Clinical Medicine, University of Milano-Bicocca, Milan, Italy
Further Information

Publication History

Publication Date:
22 February 2011 (online)

ABSTRACT

In most cholangiopathies, liver diseases of different etiologies in which the biliary epithelium is the primary target in the pathogenic sequence, the central mechanism involves inflammation. Inflammation, characterized by pleomorphic peribiliary infiltrate containing fibroblasts, macrophages, lymphocytes, as well as endothelial cells and pericytes, is associated to the emergence of “reactive cholangiocytes.” These biliary cells do not possess bile secretory functions, are in contiguity with terminal cholangioles, and are of a less-differentiated phenotype. They have acquired several mesenchymal properties, including motility and ability to secrete a vast number of proinflammatory chemo/cytokines and growth factors along with de novo expression of a rich receptor machinery. These functional properties enable reactive cholangiocytes to establish intimate contacts and to mutually exchange a variety of paracrine signals with the different mesenchymal cell types populating the portal infiltrate. The extensive crosstalk between the epithelial and mesenchymal compartments is the driver of liver repair mechanisms in cholangiopathies, ultimately evolving toward portal fibrosis. Herein, the authors first review the properties of the different cell types involved in their interaction, and then analyze the underlying molecular mechanisms as they relate to liver repair in cholangiopathies.

REFERENCES

  • 1 Lazaridis K N, Strazzabosco M, Larusso N F. The cholangiopathies: disorders of biliary epithelia.  Gastroenterology. 2004;  127 (5) 1565-1577
  • 2 Strazzabosco M, Fabris L, Spirli C. Pathophysiology of cholangiopathies.  J Clin Gastroenterol. 2005;  39 (4, Suppl 2) S90-S102
  • 3 Spirlì C, Fabris L, Duner E et al.. Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent secretion in cholangiocytes.  Gastroenterology. 2003;  124 (3) 737-753
  • 4 Liu Z, Sakamoto T, Ezure T et al.. Interleukin-6, hepatocyte growth factor, and their receptors in biliary epithelial cells during a type I ductular reaction in mice: interactions between the periductal inflammatory and stromal cells and the biliary epithelium.  Hepatology. 1998;  28 (5) 1260-1268
  • 5 Terada R, Yamamoto K, Hakoda T et al.. Stromal cell-derived factor-1 from biliary epithelial cells recruits CXCR4-positive cells: implications for inflammatory liver diseases.  Lab Invest. 2003;  83 (5) 665-672
  • 6 Yokoyama T, Komori A, Nakamura M et al.. Human intrahepatic biliary epithelial cells function in innate immunity by producing IL-6 and IL-8 via the TLR4-NF-kappaB and -MAPK signaling pathways.  Liver Int. 2006;  26 (4) 467-476
  • 7 Reynoso-Paz S, Coppel R L, Mackay I R, Bass N M, Ansari A A, Gershwin M E. The immunobiology of bile and biliary epithelium.  Hepatology. 1999;  30 (2) 351-357
  • 8 Desmet V J. Histopathology of chronic cholestasis and adult ductopenic syndrome.  Clin Liver Dis. 1998;  2 (2) 249-264, viii
  • 9 Gaudio E, Barbaro B, Alvaro D et al.. Vascular endothelial growth factor stimulates rat cholangiocyte proliferation via an autocrine mechanism.  Gastroenterology. 2006;  130 (4) 1270-1282
  • 10 Fabris L, Cadamuro M, Fiorotto R et al.. Effects of angiogenic factor overexpression by human and rodent cholangiocytes in polycystic liver diseases.  Hepatology. 2006;  43 (5) 1001-1012
  • 11 Caligiuri A, Glaser S, Rodgers R E et al.. Endothelin-1 inhibits secretin-stimulated ductal secretion by interacting with ETA receptors on large cholangiocytes.  Am J Physiol. 1998;  275 (4 Pt 1) G835-G846
  • 12 Grappone C, Pinzani M, Parola M et al.. Expression of platelet-derived growth factor in newly formed cholangiocytes during experimental biliary fibrosis in rats.  J Hepatol. 1999;  31 (1) 100-109
  • 13 George J, Roulot D, Koteliansky V E, Bissell D M. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: a potential new therapy for hepatic fibrosis.  Proc Natl Acad Sci U S A. 1999;  96 (22) 12719-12724
  • 14 Sedlaczek N, Jia J D, Bauer M et al.. Proliferating bile duct epithelial cells are a major source of connective tissue growth factor in rat biliary fibrosis.  Am J Pathol. 2001;  158 (4) 1239-1244
  • 15 Yasoshima M, Kono N, Sugawara H, Katayanagi K, Harada K, Nakanuma Y. Increased expression of interleukin-6 and tumor necrosis factor-alpha in pathologic biliary epithelial cells: in situ and culture study.  Lab Invest. 1998;  78 (1) 89-100
  • 16 Nichols M T, Gidey E, Matzakos T et al.. Secretion of cytokines and growth factors into autosomal dominant polycystic kidney disease liver cyst fluid.  Hepatology. 2004;  40 (4) 836-846
  • 17 Barnes B H, Tucker R M, Wehrmann F, Mack D G, Ueno Y, Mack C L. Cholangiocytes as immune modulators in rotavirus-induced murine biliary atresia.  Liver Int. 2009;  29 (8) 1253-1261
  • 18 Marra F, DeFranco R, Grappone C et al.. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration.  Am J Pathol. 1998;  152 (2) 423-430
  • 19 Saito J M, Maher J J. Bile duct ligation in rats induces biliary expression of cytokine-induced neutrophil chemoattractant.  Gastroenterology. 2000;  118 (6) 1157-1168
  • 20 Fabris L, Strazzabosco M, Crosby H A et al.. Characterization and isolation of ductular cells coexpressing neural cell adhesion molecule and Bcl-2 from primary cholangiopathies and ductal plate malformations.  Am J Pathol. 2000;  156 (5) 1599-1612
  • 21 Popov Y, Patsenker E, Stickel F et al.. Integrin alphavbeta6 is a marker of the progression of biliary and portal liver fibrosis and a novel target for antifibrotic therapies.  J Hepatol. 2008;  48 (3) 453-464
  • 22 Patsenker E, Popov Y, Stickel F, Jonczyk A, Goodman S L, Schuppan D. Inhibition of integrin alphavbeta6 on cholangiocytes blocks transforming growth factor-beta activation and retards biliary fibrosis progression.  Gastroenterology. 2008;  135 (2) 660-670
  • 23 Desmet V J. The amazing universe of hepatic microstructure.  Hepatology. 2009;  50 (2) 333-344
  • 24 Omenetti A, Yang L, Li Y X et al.. Hedgehog-mediated mesenchymal-epithelial interactions modulate hepatic response to bile duct ligation.  Lab Invest. 2007;  87 (5) 499-514
  • 25 Ader T, Norel R, Levoci L, Rogler L E. Transcriptional profiling implicates TGFbeta/BMP and Notch signaling pathways in ductular differentiation of fetal murine hepatoblasts.  Mech Dev. 2006;  123 (2) 177-194
  • 26 Thompson M D, Monga S P. WNT/beta-catenin signaling in liver health and disease.  Hepatology. 2007;  45 (5) 1298-1305
  • 27 Michalopoulos G K, Bowen W C, Mulè K, Lopez-Talavera J C, Mars W. Hepatocytes undergo phenotypic transformation to biliary epithelium in organoid cultures.  Hepatology. 2002;  36 (2) 278-283
  • 28 Apte U, Thompson M D, Cui S, Liu B, Cieply B, Monga S P. Wnt/beta-catenin signaling mediates oval cell response in rodents.  Hepatology. 2008;  47 (1) 288-295
  • 29 Santoni-Rugiu E, Jelnes P, Thorgeirsson S S, Bisgaard H C. Progenitor cells in liver regeneration: molecular responses controlling their activation and expansion.  APMIS. 2005;  113 (11-12) 876-902
  • 30 Li Z, White P, Tuteja G, Rubins N, Sackett S, Kaestner K H. Foxa1 and Foxa2 regulate bile duct development in mice.  J Clin Invest. 2009;  119 (6) 1537-1545
  • 31 Strazzabosco M. Foxa1 and Foxa2 regulate bile duct development in mice.  J Hepatol. 2010;  52 (5) 765-767
  • 32 Semela D, Das A, Langer D, Kang N, Leof E, Shah V. Platelet-derived growth factor signaling through ephrin-b2 regulates hepatic vascular structure and function.  Gastroenterology. 2008;  135 (2) 671-679
  • 33 Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease.  J Hepatol. 2009;  50 (3) 604-620
  • 34 Medina J, Sanz-Cameno P, García-Buey L, Martín-Vílchez S, López-Cabrera M, Moreno-Otero R. Evidence of angiogenesis in primary biliary cirrhosis: an immunohistochemical descriptive study.  J Hepatol. 2005;  42 (1) 124-131
  • 35 Kawahara N, Ono M, Taguchi K et al.. Enhanced expression of thrombospondin-1 and hypovascularity in human cholangiocarcinoma.  Hepatology. 1998;  28 (6) 1512-1517
  • 36 Abrahám S, Szabó A, Kaszaki J et al.. Kupffer cell blockade improves the endotoxin-induced microcirculatory inflammatory response in obstructive jaundice.  Shock. 2008;  30 (1) 69-74
  • 37 Shipley J M, Wesselschmidt R L, Kobayashi D K, Ley T J, Shapiro S D. Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice.  Proc Natl Acad Sci U S A. 1996;  93 (9) 3942-3946
  • 38 Fallowfield J A, Mizuno M, Kendall T J et al.. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis.  J Immunol. 2007;  178 (8) 5288-5295
  • 39 Popov Y, Sverdlov D Y, Bhaskar K R et al.. Macrophage-mediated phagocytosis of apoptotic cholangiocytes contributes to reversal of experimental biliary fibrosis.  Am J Physiol Gastrointest Liver Physiol. 2010;  298 (3) G323-G334
  • 40 Wuestefeld T, Klein C, Streetz K L et al.. Interleukin-6/glycoprotein 130-dependent pathways are protective during liver regeneration.  J Biol Chem. 2003;  278 (13) 11281-11288
  • 41 Jakubowski A, Ambrose C, Parr M et al.. TWEAK induces liver progenitor cell proliferation.  J Clin Invest. 2005;  115 (9) 2330-2340
  • 42 Shimoda S, Harada K, Niiro H et al.. Biliary epithelial cells and primary biliary cirrhosis: the role of liver-infiltrating mononuclear cells.  Hepatology. 2008;  47 (3) 958-965
  • 43 Shimoda S, Harada K, Niiro H et al.. CX3CL1 (fractalkine): a signpost for biliary inflammation in primary biliary cirrhosis.  Hepatology. 2010;  51 (2) 567-575
  • 44 Klein I, Cornejo J C, Polakos N K et al.. Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages.  Blood. 2007;  110 (12) 4077-4085
  • 45 Imamura M, Ogawa T, Sasaguri Y, Chayama K, Ueno H. Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats.  Gastroenterology. 2005;  128 (1) 138-146
  • 46 Tacke F, Alvarez D, Kaplan T J et al.. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques.  J Clin Invest. 2007;  117 (1) 185-194
  • 47 Karlmark K R, Weiskirchen R, Zimmermann H W et al.. Hepatic recruitment of the inflammatory Gr1 + monocyte subset upon liver injury promotes hepatic fibrosis.  Hepatology. 2009;  50 (1) 261-274
  • 48 Zimmermann H W, Seidler S, Nattermann J et al.. Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis.  PLoS ONE. 2010;  5 (6) e11049
  • 49 Kinnman N, Hultcrantz R, Barbu V et al.. PDGF-mediated chemoattraction of hepatic stellate cells by bile duct segments in cholestatic liver injury.  Lab Invest. 2000;  80 (5) 697-707
  • 50 Schaffner F, Barka T, Popper H. Hepatic mesenchymal cell reaction in liver disease.  Exp Mol Pathol. 1963;  31 419-441
  • 51 Dranoff J A, Wells R G. Portal fibroblasts: Underappreciated mediators of biliary fibrosis.  Hepatology. 2010;  51 (4) 1438-1444
  • 52 Milani S, Herbst H, Schuppan D, Stein H, Surrenti C. Transforming growth factors beta 1 and beta 2 are differentially expressed in fibrotic liver disease.  Am J Pathol. 1991;  139 (6) 1221-1229
  • 53 Kruglov E A, Nathanson R A, Nguyen T, Dranoff J A. Secretion of MCP-1/CCL2 by bile duct epithelia induces myofibroblastic transdifferentiation of portal fibroblasts.  Am J Physiol Gastrointest Liver Physiol. 2006;  290 (4) G765-G771
  • 54 Jhandier M N, Kruglov E A, Lavoie E G, Sévigny J, Dranoff J A. Portal fibroblasts regulate the proliferation of bile duct epithelia via expression of NTPDase2.  J Biol Chem. 2005;  280 (24) 22986-22992
  • 55 Kinnman N, Francoz C, Barbu V et al.. The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis.  Lab Invest. 2003;  83 (2) 163-173
  • 56 Russo F P, Alison M R, Bigger B W et al.. The bone marrow functionally contributes to liver fibrosis.  Gastroenterology. 2006;  130 (6) 1807-1821
  • 57 Wells R G. The epithelial-to-mesenchymal transition in liver fibrosis: here today, gone tomorrow?.  Hepatology. 2010;  51 (3) 737-740
  • 58 Cassiman D, Libbrecht L, Desmet V, Denef C, Roskams T. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers.  J Hepatol. 2002;  36 (2) 200-209
  • 59 Friedman S L. Mechanisms of hepatic fibrogenesis.  Gastroenterology. 2008;  134 (6) 1655-1669
  • 60 Viñas O, Bataller R, Sancho-Bru P et al.. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation.  Hepatology. 2003;  38 (4) 919-929
  • 61 Winau F, Hegasy G, Weiskirchen R et al.. Ito cells are liver-resident antigen-presenting cells for activating T cell responses.  Immunity. 2007;  26 (1) 117-129
  • 62 Ankoma-Sey V, Wang Y, Dai Z. Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells.  Hepatology. 2000;  31 (1) 141-148
  • 63 Novo E, Cannito S, Zamara E et al.. Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells.  Am J Pathol. 2007;  170 (6) 1942-1953
  • 64 Novo E, di Bonzo L V, Cannito S, Colombatto S, Parola M. Hepatic myofibroblasts: a heterogeneous population of multifunctional cells in liver fibrogenesis.  Int J Biochem Cell Biol. 2009;  41 (11) 2089-2093
  • 65 Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells.  Semin Liver Dis. 2001;  21 (3) 397-416
  • 66 Yavrom S, Chen L, Xiong S, Wang J, Rippe R A, Tsukamoto H. Peroxisome proliferator-activated receptor gamma suppresses proximal alpha1(I) collagen promoter via inhibition of p300-facilitated NF-I binding to DNA in hepatic stellate cells.  J Biol Chem. 2005;  280 (49) 40650-40659
  • 67 Hong F, Tuyama A, Lee T F et al.. Hepatic stellate cells express functional CXCR4: role in stromal cell-derived factor-1alpha-mediated stellate cell activation.  Hepatology. 2009;  49 (6) 2055-2067
  • 68 Chesney J, Metz C, Stavitsky A B, Bacher M, Bucala R. Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes.  J Immunol. 1998;  160 (1) 419-425
  • 69 Quan T E, Cowper S, Wu S P, Bockenstedt L K, Bucala R. Circulating fibrocytes: collagen-secreting cells of the peripheral blood.  Int J Biochem Cell Biol. 2004;  36 (4) 598-606
  • 70 Keeley E C, Mehrad B, Strieter R M. The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of fibrotic disorders.  Thromb Haemost. 2009;  101 (4) 613-618
  • 71 Asawa S, Saito T, Satoh A et al.. Participation of bone marrow cells in biliary fibrosis after bile duct ligation.  J Gastroenterol Hepatol. 2007;  22 (11) 2001-2008
  • 72 Phillips R J, Burdick M D, Hong K et al.. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis.  J Clin Invest. 2004;  114 (3) 438-446
  • 73 Strieter R M, Gomperts B N, Keane M P. The role of CXC chemokines in pulmonary fibrosis.  J Clin Invest. 2007;  117 (3) 549-556
  • 74 Mehrad B, Burdick M D, Zisman D A, Keane M P, Belperio J A, Strieter R M. Circulating peripheral blood fibrocytes in human fibrotic interstitial lung disease.  Biochem Biophys Res Commun. 2007;  353 (1) 104-108
  • 75 Andersson-Sjöland A, de Alba C G, Nihlberg K et al.. Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis.  Int J Biochem Cell Biol. 2008;  40 (10) 2129-2140
  • 76 Kisseleva T, Uchinami H, Feirt N et al.. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis.  J Hepatol. 2006;  45 (3) 429-438
  • 77 Guo J, Friedman S L. Hepatic fibrogenesis.  Semin Liver Dis. 2007;  27 (4) 413-426
  • 78 Jafri M, Donnelly B, Allen S et al.. Cholangiocyte expression of alpha2beta1-integrin confers susceptibility to rotavirus-induced experimental biliary atresia.  Am J Physiol Gastrointest Liver Physiol. 2008;  295 (1) G16-G26
  • 79 Wang B, Dolinski B M, Kikuchi N et al.. Role of alphavbeta6 integrin in acute biliary fibrosis.  Hepatology. 2007;  46 (5) 1404-1412
  • 80 Margadant C, Sonnenberg A. Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing.  EMBO Rep. 2010;  11 (2) 97-105
  • 81 Maeda N, Kawada N, Seki S et al.. Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways.  J Biol Chem. 2003;  278 (21) 18938-18944
  • 82 Henderson N C, Mackinnon A C, Farnworth S L et al.. Galectin-3 regulates myofibroblast activation and hepatic fibrosis.  Proc Natl Acad Sci U S A. 2006;  103 (13) 5060-5065
  • 83 Chiquet-Ehrismann R, Mackie E J, Pearson C A, Sakakura T. Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis.  Cell. 1986;  47 (1) 131-139
  • 84 Swindle C S, Tran K T, Johnson T D et al.. Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor.  J Cell Biol. 2001;  154 (2) 459-468
  • 85 Van Eyken P, Sciot R, Desmet V J. Expression of the novel extracellular matrix component tenascin in normal and diseased human liver. An immunohistochemical study.  J Hepatol. 1990;  11 (1) 43-52
  • 86 Van Eyken P, Geerts A, De Bleser P et al.. Localization and cellular source of the extracellular matrix protein tenascin in normal and fibrotic rat liver.  Hepatology. 1992;  15 (5) 909-916
  • 87 Miyazaki H, Van Eyken P, Roskams T, De Vos R, Desmet V J. Transient expression of tenascin in experimentally induced cholestatic fibrosis in rat liver: an immunohistochemical study.  J Hepatol. 1993;  19 (3) 353-366
  • 88 Aishima S, Taguchi K, Terashi T, Matsuura S, Shimada M, Tsuneyoshi M. Tenascin expression at the invasive front is associated with poor prognosis in intrahepatic cholangiocarcinoma.  Mod Pathol. 2003;  16 (10) 1019-1027
  • 89 Roskams T, Rosenbaum J, De Vos R, David G, Desmet V. Heparan sulfate proteoglycan expression in chronic cholestatic human liver diseases.  Hepatology. 1996;  24 (3) 524-532
  • 90 Liu B, Paranjpe S, Bowen W C et al.. Investigation of the role of glypican 3 in liver regeneration and hepatocyte proliferation.  Am J Pathol. 2009;  175 (2) 717-724
  • 91 Karlsen T H, Franke A, Melum E et al.. Genome-wide association analysis in primary sclerosing cholangitis.  Gastroenterology. 2010;  138 (3) 1102-1111
  • 92 Yasoshima M, Tsuneyama K, Harada K, Sasaki M, Gershwin M E, Nakanuma Y. Immunohistochemical analysis of cell-matrix adhesion molecules and their ligands in the portal tracts of primary biliary cirrhosis.  J Pathol. 2000;  190 (1) 93-99
  • 93 Yasoshima M, Sato Y, Furubo S et al.. Matrix proteins of basement membrane of intrahepatic bile ducts are degraded in congenital hepatic fibrosis and Caroli's disease.  J Pathol. 2009;  217 (3) 442-451
  • 94 Joplin R, Hishida T, Tsubouchi H et al.. Human intrahepatic biliary epithelial cells proliferate in vitro in response to human hepatocyte growth factor.  J Clin Invest. 1992;  90 (4) 1284-1289
  • 95 Ishida Y, Smith S, Wallace L et al.. Ductular morphogenesis and functional polarization of normal human biliary epithelial cells in three-dimensional culture.  J Hepatol. 2001;  35 (1) 2-9
  • 96 Matsuda Y, Matsumoto K, Ichida T, Nakamura T. Hepatocyte growth factor suppresses the onset of liver cirrhosis and abrogates lethal hepatic dysfunction in rats.  J Biochem. 1995;  118 (3) 643-649
  • 97 Yasuda H, Imai E, Shiota A, Fujise N, Morinaga T, Higashio K. Antifibrogenic effect of a deletion variant of hepatocyte growth factor on liver fibrosis in rats.  Hepatology. 1996;  24 (3) 636-642
  • 98 Inagaki Y, Higashi K, Kushida M et al.. Hepatocyte growth factor suppresses profibrogenic signal transduction via nuclear export of Smad3 with galectin-7.  Gastroenterology. 2008;  134 (4) 1180-1190
  • 99 Xia J L, Dai C, Michalopoulos G K, Liu Y. Hepatocyte growth factor attenuates liver fibrosis induced by bile duct ligation.  Am J Pathol. 2006;  168 (5) 1500-1512
  • 100 Pinzani M, Gesualdo L, Sabbah G M, Abboud H E. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells.  J Clin Invest. 1989;  84 (6) 1786-1793
  • 101 Friedman S L, Arthur M J. Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. Direct enhancement of matrix synthesis and stimulation of cell proliferation via induction of platelet-derived growth factor receptors.  J Clin Invest. 1989;  84 (6) 1780-1785
  • 102 Kinnman N, Goria O, Wendum D et al.. Hepatic stellate cell proliferation is an early platelet-derived growth factor-mediated cellular event in rat cholestatic liver injury.  Lab Invest. 2001;  81 (12) 1709-1716
  • 103 Lechuga C G, Hernández-Nazara Z H, Hernández E et al.. PI3K is involved in PDGF-beta receptor upregulation post-PDGF-BB treatment in mouse HSC.  Am J Physiol Gastrointest Liver Physiol. 2006;  291 (6) G1051-G1061
  • 104 Rovida E, Navari N, Caligiuri A, Dello Sbarba P, Marra F. ERK5 differentially regulates PDGF-induced proliferation and migration of hepatic stellate cells.  J Hepatol. 2008;  48 (1) 107-115
  • 105 Melton A C, Yee H F. Hepatic stellate cell protrusions couple platelet-derived growth factor-BB to chemotaxis.  Hepatology. 2007;  45 (6) 1446-1453
  • 106 Borkham-Kamphorst E, van Roeyen C R, Ostendorf T, Floege J, Gressner A M, Weiskirchen R. Pro-fibrogenic potential of PDGF-D in liver fibrosis.  J Hepatol. 2007;  46 (6) 1064-1074
  • 107 Liu C, Gaça M D, Swenson E S, Vellucci V F, Reiss M, Wells R G. Smads 2 and 3 are differentially activated by transforming growth factor-beta (TGF-beta) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of Smads in activated cells is TGF-beta-independent.  J Biol Chem. 2003;  278 (13) 11721-11728
  • 108 Massagué J, Seoane J, Wotton D. Smad transcription factors.  Genes Dev. 2005;  19 (23) 2783-2810
  • 109 Inagaki Y, Okazaki I. Emerging insights into transforming growth factor beta Smad signal in hepatic fibrogenesis.  Gut. 2007;  56 (2) 284-292
  • 110 Roy H, Bhardwaj S, Ylä-Herttuala S. Biology of vascular endothelial growth factors.  FEBS Lett. 2006;  580 (12) 2879-2887
  • 111 Morisada T, Kubota Y, Urano T, Suda T, Oike Y. Angiopoietins and angiopoietin-like proteins in angiogenesis.  Endothelium. 2006;  13 (2) 71-79
  • 112 Gaudio E, Franchitto A, Pannarale L et al.. Cholangiocytes and blood supply.  World J Gastroenterol. 2006;  12 (22) 3546-3552
  • 113 Fabris L, Cadamuro M, Libbrecht L et al.. Epithelial expression of angiogenic growth factors modulate arterial vasculogenesis in human liver development.  Hepatology. 2008;  47 (2) 719-728
  • 114 Spirli C, Okolicsanyi S, Fiorotto R et al.. ERK1/2-dependent vascular endothelial growth factor signaling sustains cyst growth in polycystin-2 defective mice.  Gastroenterology. 2010;  138 (1) 360-371, e7
  • 115 Spirli C, Okolicsanyi S, Fiorotto R et al.. Mammalian target of rapamycin regulates vascular endothelial growth factor-dependent liver cyst growth in polycystin-2-defective mice.  Hepatology. 2010;  51 (5) 1778-1788
  • 116 Igarashi P, Somlo S. Genetics and pathogenesis of polycystic kidney disease.  J Am Soc Nephrol. 2002;  13 (9) 2384-2398
  • 117 Wilson P D. Polycystic kidney disease: new understanding in the pathogenesis.  Int J Biochem Cell Biol. 2004;  36 (10) 1868-1873
  • 118 Yoshiji H, Kuriyama S, Yoshii J et al.. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis.  Gut. 2003;  52 (9) 1347-1354
  • 119 Brodsky K S, McWilliams R R, Amura C R, Barry N P, Doctor R B. Liver cyst cytokines promote endothelial cell proliferation and development.  Exp Biol Med (Maywood). 2009;  234 (10) 1155-1165
  • 120 Aiuti A, Webb I J, Bleul C, Springer T, Gutierrez-Ramos J C. The chemokine SDF-1 is a chemoattractant for human CD34 + hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34 + progenitors to peripheral blood.  J Exp Med. 1997;  185 (1) 111-120
  • 121 Bleul C C, Schultze J L, Springer T A. B lymphocyte chemotaxis regulated in association with microanatomic localization, differentiation state, and B cell receptor engagement.  J Exp Med. 1998;  187 (5) 753-762
  • 122 Tachibana K, Hirota S, Iizasa H et al.. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract.  Nature. 1998;  393 (6685) 591-594
  • 123 Coulomb-L'Hermin A, Amara A, Schiff C et al.. Stromal cell-derived factor 1 (SDF-1) and antenatal human B cell lymphopoiesis: expression of SDF-1 by mesothelial cells and biliary ductal plate epithelial cells.  Proc Natl Acad Sci U S A. 1999;  96 (15) 8585-8590
  • 124 Kollet O, Shivtiel S, Chen Y Q et al.. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34 + stem cell recruitment to the liver.  J Clin Invest. 2003;  112 (2) 160-169
  • 125 Ohira S, Itatsu K, Sasaki M et al.. Local balance of transforming growth factor-beta1 secreted from cholangiocarcinoma cells and stromal-derived factor-1 secreted from stromal fibroblasts is a factor involved in invasion of cholangiocarcinoma.  Pathol Int. 2006;  56 (7) 381-389
  • 126 Ohira S, Sasaki M, Harada K et al.. Possible regulation of migration of intrahepatic cholangiocarcinoma cells by interaction of CXCR4 expressed in carcinoma cells with tumor necrosis factor-alpha and stromal-derived factor-1 released in stroma.  Am J Pathol. 2006;  168 (4) 1155-1168
  • 127 Bradham D M, Igarashi A, Potter R L, Grotendorst G R. Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10.  J Cell Biol. 1991;  114 (6) 1285-1294
  • 128 O'Brien T P, Yang G P, Sanders L, Lau L F. Expression of cyr61, a growth factor-inducible immediate-early gene.  Mol Cell Biol. 1990;  10 (7) 3569-3577
  • 129 Ryseck R P, Macdonald-Bravo H, Mattéi M G, Bravo R. Structure, mapping, and expression of fisp-12, a growth factor-inducible gene encoding a secreted cysteine-rich protein.  Cell Growth Differ. 1991;  2 (5) 225-233
  • 130 Igarashi A, Okochi H, Bradham D M, Grotendorst G R. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair.  Mol Biol Cell. 1993;  4 (6) 637-645
  • 131 Paradis V, Dargere D, Bonvoust F, Vidaud M, Segarini P, Bedossa P. Effects and regulation of connective tissue growth factor on hepatic stellate cells.  Lab Invest. 2002;  82 (6) 767-774
  • 132 Gao R, Ball D K, Perbal B, Brigstock D R. Connective tissue growth factor induces c-fos gene activation and cell proliferation through p44/42 MAP kinase in primary rat hepatic stellate cells.  J Hepatol. 2004;  40 (3) 431-438
  • 133 Paradis V, Dargere D, Vidaud M et al.. Expression of connective tissue growth factor in experimental rat and human liver fibrosis.  Hepatology. 1999;  30 (4) 968-976
  • 134 Kobayashi H, Hayashi N, Hayashi K, Yamataka A, Lane G J, Miyano T. Connective tissue growth factor and progressive fibrosis in biliary atresia.  Pediatr Surg Int. 2005;  21 (1) 12-16
  • 135 Gardini A, Corti B, Fiorentino M et al.. Expression of connective tissue growth factor is a prognostic marker for patients with intrahepatic cholangiocarcinoma.  Dig Liver Dis. 2005;  37 (4) 269-274
  • 136 Yang L, Wang Y, Mao H et al.. Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells.  J Hepatol. 2008;  48 (1) 98-106
  • 137 Omenetti A, Diehl A M. The adventures of sonic hedgehog in development and repair. II. Sonic hedgehog and liver development, inflammation, and cancer.  Am J Physiol Gastrointest Liver Physiol. 2008;  294 (3) G595-G598
  • 138 Omenetti A, Porrello A, Jung Y et al.. Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans.  J Clin Invest. 2008;  118 (10) 3331-3342
  • 139 Jung Y, McCall S J, Li Y X, Diehl A M. Bile ductules and stromal cells express hedgehog ligands and/or hedgehog target genes in primary biliary cirrhosis.  Hepatology. 2007;  45 (5) 1091-1096
  • 140 Omenetti A, Popov Y, Jung Y et al.. The hedgehog pathway regulates remodelling responses to biliary obstruction in rats.  Gut. 2008;  57 (9) 1275-1282
  • 141 Logan C Y, Nusse R. The Wnt signaling pathway in development and disease.  Annu Rev Cell Dev Biol. 2004;  20 781-810
  • 142 Sackett S D, Gao Y, Shin S et al.. Foxl1 promotes liver repair following cholestatic injury in mice.  Lab Invest. 2009;  89 (12) 1387-1396
  • 143 Monga S P, Monga H K, Tan X, Mulé K, Pediaditakis P, Michalopoulos G K. Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification.  Gastroenterology. 2003;  124 (1) 202-216
  • 144 Hussain S Z, Sneddon T, Tan X, Micsenyi A, Michalopoulos G K, Monga S P. Wnt impacts growth and differentiation in ex vivo liver development.  Exp Cell Res. 2004;  292 (1) 157-169
  • 145 Decaens T, Godard C, de Reyniès A et al.. Stabilization of beta-catenin affects mouse embryonic liver growth and hepatoblast fate.  Hepatology. 2008;  47 (1) 247-258
  • 146 Jiang F, Parsons C J, Stefanovic B. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation.  J Hepatol. 2006;  45 (3) 401-409
  • 147 Myung S J, Yoon J H, Gwak G Y et al.. Wnt signaling enhances the activation and survival of human hepatic stellate cells.  FEBS Lett. 2007;  581 (16) 2954-2958
  • 148 Cheng J H, She H, Han Y P et al.. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis.  Am J Physiol Gastrointest Liver Physiol. 2008;  294 (1) G39-G49
  • 149 Montcouquiol M, Crenshaw III E B, Kelley M W. Noncanonical Wnt signaling and neural polarity.  Annu Rev Neurosci. 2006;  29 363-386
  • 150 Lancaster M A, Gleeson J G. Cystic kidney disease: the role of Wnt signaling.  Trends Mol Med. 2010;  16 (8) 349-360
  • 151 Lai E C. Notch signaling: control of cell communication and cell fate.  Development. 2004;  131 (5) 965-973
  • 152 Cornell R A, Eisen J S. Notch in the pathway: the roles of Notch signaling in neural crest development.  Semin Cell Dev Biol. 2005;  16 (6) 663-672
  • 153 Blank U, Karlsson G, Karlsson S. Signaling pathways governing stem-cell fate.  Blood. 2008;  111 (2) 492-503
  • 154 Chiba S. Notch signaling in stem cell system.  Stem Cells. 2006;  24 2437-2447
  • 155 Gridley T. Notch signaling and inherited disease syndromes.  Hum Mol Genet. 2003;  12 (Spec No 1) R9-R13
  • 156 Schweisguth F. Regulation of notch signaling activity.  Curr Biol. 2004;  14 (3) R129-R138
  • 157 Zong Y, Panikkar A, Xu J et al.. Notch signaling controls liver development by regulating biliary differentiation.  Development. 2009;  136 (10) 1727-1739
  • 158 Lemaigre F P. Notch signaling in bile duct development: new insights raise new questions.  Hepatology. 2008;  48 (2) 358-360
  • 159 Tanimizu N, Miyajima A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors.  J Cell Sci. 2004;  117 (Pt 15) 3165-3174
  • 160 McDaniell R, Warthen D M, Sanchez-Lara P A et al.. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway.  Am J Hum Genet. 2006;  79 (1) 169-173
  • 161 Li L, Krantz I D, Deng Y et al.. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1.  Nat Genet. 1997;  16 (3) 243-251
  • 162 Oda T, Elkahloun A G, Pike B L et al.. Mutations in the human Jagged1 gene are responsible for Alagille syndrome.  Nat Genet. 1997;  16 (3) 235-242
  • 163 Crosnier C, Attié-Bitach T, Encha-Razavi F et al.. JAGGED1 gene expression during human embryogenesis elucidates the wide phenotypic spectrum of Alagille syndrome.  Hepatology. 2000;  32 (3) 574-581
  • 164 Piccoli D A, Spinner N B. Alagille syndrome and the Jagged1 gene.  Semin Liver Dis. 2001;  21 (4) 525-534
  • 165 Desmet V J. Ludwig symposium on biliary disorders—part I. Pathogenesis of ductal plate abnormalities.  Mayo Clin Proc. 1998;  73 (1) 80-89
  • 166 Katuri V, Tang Y, Li C et al.. Critical interactions between TGF-beta signaling/ELF, and E-cadherin/beta-catenin mediated tumor suppression.  Oncogene. 2006;  25 (13) 1871-1886
  • 167 Brabletz S, Schmalhofer O, Brabletz T. Gastrointestinal stem cells in development and cancer.  J Pathol. 2009;  217 (2) 307-317
  • 168 Fujikura J, Hosoda K, Iwakura H et al.. Notch/Rbp-j signaling prevents premature endocrine and ductal cell differentiation in the pancreas.  Cell Metab. 2006;  3 (1) 59-65
  • 169 Farnie G, Clarke R B. Mammary stem cells and breast cancer—role of Notch signalling.  Stem Cell Rev. 2007;  3 (2) 169-175
  • 170 Blank U, Karlsson G, Karlsson S. Signaling pathways governing stem-cell fate.  Blood. 2008;  111 (2) 492-503
  • 171 Alexson T O, Hitoshi S, Coles B L, Bernstein A, van der Kooy D. Notch signaling is required to maintain all neural stem cell populations—irrespective of spatial or temporal niche.  Dev Neurosci. 2006;  28 (1-2) 34-48
  • 172 Zanotti S, Canalis E. Notch and the skeleton.  Mol Cell Biol. 2010;  30 (4) 886-896
  • 173 Felszeghy S, Suomalainen M, Thesleff I. Notch signalling is required for the survival of epithelial stem cells in the continuously growing mouse incisor.  Differentiation. 2010;  80 241-248
  • 174 Dellatore S M, Garcia A S, Miller W M. Mimicking stem cell niches to increase stem cell expansion.  Curr Opin Biotechnol. 2008;  19 (5) 534-540
  • 175 Nijjar S S, Wallace L, Crosby H A, Hubscher S G, Strain A J. Altered Notch ligand expression in human liver disease: further evidence for a role of the Notch signaling pathway in hepatic neovascularization and biliary ductular defects.  Am J Pathol. 2002;  160 (5) 1695-1703
  • 176 Spee B, Carpino G, Schotanus B A et al.. Characterisation of the liver progenitor cell niche in liver diseases: potential involvement of Wnt and Notch signalling.  Gut. 2010;  59 (2) 247-257
  • 177 Fabris L, Cadamuro M, Guido M et al.. Analysis of liver repair mechanisms in Alagille syndrome and biliary atresia reveals a role for notch signaling.  Am J Pathol. 2007;  171 (2) 641-653
  • 178 Fiorotto R, Spirli C, Scirpo R et al.. Progenitor cell activation and liver repair is altered in Notch2- and RBP-Jk-defective mice exposed to cholestatic injuries.  J Hepatol. 2010;  52 S45
  • 179 Sawitza I, Kordes C, Reister S, Häussinger D. The niche of stellate cells within rat liver.  Hepatology. 2009;  50 (5) 1617-1624
  • 180 Venkov C D, Link A J, Jennings J L et al.. A proximal activator of transcription in epithelial-mesenchymal transition.  J Clin Invest. 2007;  117 (2) 482-491
  • 181 Rhyu D Y, Yang Y, Ha H et al.. Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells.  J Am Soc Nephrol. 2005;  16 (3) 667-675
  • 182 Zeisberg M, Neilson E G. Biomarkers for epithelial-mesenchymal transitions.  J Clin Invest. 2009;  119 (6) 1429-1437
  • 183 Sato Y, Harada K, Ozaki S et al.. Cholangiocytes with mesenchymal features contribute to progressive hepatic fibrosis of the polycystic kidney rat.  Am J Pathol. 2007;  171 (6) 1859-1871
  • 184 Harada K, Sato Y, Ikeda H et al.. Epithelial-mesenchymal transition induced by biliary innate immunity contributes to the sclerosing cholangiopathy of biliary atresia.  J Pathol. 2009;  217 (5) 654-664
  • 185 Sato Y, Harada K, Itatsu K et al.. Epithelial-mesenchymal transition induced by transforming growth factor-beta1/snail activation aggravates invasive growth of cholangiocarcinoma.  Am J Pathol. 2010;  177 (1) 141-152
  • 186 Strutz F, Okada H, Lo C W et al.. Identification and characterization of a fibroblast marker: FSP1.  J Cell Biol. 1995;  130 (2) 393-405
  • 187 Le Hir M, Hegyi I, Cueni-Loffing D, Loffing J, Kaissling B. Characterization of renal interstitial fibroblast-specific protein 1/S100A4-positive cells in healthy and inflamed rodent kidneys.  Histochem Cell Biol. 2005;  123 (4-5) 335-346
  • 188 Taura K, Miura K, Iwaisako K et al.. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice.  Hepatology. 2010;  51 (3) 1027-1036
  • 189 Lorent K, Yeo S Y, Oda T et al.. Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy.  Development. 2004;  131 (22) 5753-5766
  • 190 Antoniou A, Raynaud P, Cordi S et al.. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9.  Gastroenterology. 2009;  136 (7) 2325-2333
  • 191 Libbrecht L, Spinner N B, Moore E C, Cassiman D, Van Damme-Lombaerts R, Roskams T. Peripheral bile duct paucity and cholestasis in the liver of a patient with Alagille syndrome: further evidence supporting a lack of postnatal bile duct branching and elongation.  Am J Surg Pathol. 2005;  29 (6) 820-826
  • 192 Clotman F, Jacquemin P, Plumb-Rudewiez N et al.. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors.  Genes Dev. 2005;  19 (16) 1849-1854
  • 193 Blechacz B, Gores G J. Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment.  Hepatology. 2008;  48 (1) 308-321
  • 194 Mueller M M, Fusenig N E. Friends or foes - bipolar effects of the tumour stroma in cancer.  Nat Rev Cancer. 2004;  4 (11) 839-849
  • 195 Kalluri R, Weinberg R A. The basics of epithelial-mesenchymal transition.  J Clin Invest. 2009;  119 (6) 1420-1428
  • 196 Yauch R L, Gould S E, Scales S J et al.. A paracrine requirement for hedgehog signalling in cancer.  Nature. 2008;  455 (7211) 406-410
  • 197 Erez N, Truitt M, Olson P, Arron S T, Hanahan D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner.  Cancer Cell. 2010;  17 (2) 135-147
  • 198 Kalluri R, Zeisberg M. Fibroblasts in cancer.  Nat Rev Cancer. 2006;  6 (5) 392-401
  • 199 Santamaria-Martínez A, Barquinero J, Barbosa-Desongles A et al.. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis.  Exp Cell Res. 2009;  315 (17) 3004-3013
  • 200 Thiery J P, Sleeman J P. Complex networks orchestrate epithelial-mesenchymal transitions.  Nat Rev Mol Cell Biol. 2006;  7 (2) 131-142
  • 201 Kalluri R. EMT: when epithelial cells decide to become mesenchymal-like cells.  J Clin Invest. 2009;  119 (6) 1417-1419

Mario StrazzaboscoM.D. Ph.D. 

Department of Internal Medicine, Section of Digestive Diseases

Yale University School of Medicine, 333 Cedar Street LMP 1080, New Haven, CT 06520

Email: mario.strazzabosco@yale.edu

    >