Int J Sports Med 2011; 32(7): 559-564
DOI: 10.1055/s-0031-1273741
Genetics & Molecular Biology

© Georg Thieme Verlag KG Stuttgart · New York

Proteomic Profiling of K-11706 Responsive Proteins

M. Horie1 , Y. Kawashima2 , A. Naka1 , K. Matsumoto3 , Y. Kodera2 , 4 , T. Maeda2 , K. Iida1 , 5
  • 1Graduate School of Comprehensive Human Sciences, University of Tsukuba, Department of Sports Medicine, Tsukuba, Japan
  • 2Kitasato University, Department of Physics, School of Science, Sagamihara, Japan
  • 3University of Tsukuba, Graduate School of Comprehensive Human Sciences, Tsukuba, Japan
  • 4Kitasato University, Center for Disease Proteomics, Sagamihara, Japan
  • 5Department of Lifestyle Medicine & Applied Nutrition, Ochanomizu University, Tokyo, Japan
Further Information

Publication History

accepted after revision February 7, 2011

Publication Date:
12 May 2011 (online)

Abstract

Erythropoietin promotes the production of red blood cells. Recombinant human erythropoietin is illicitly used to improve performance in endurance sports. Expression of the Erythropoietin gene is negatively controlled by the transcription factor GATA-binding protein (GATA). Specific GATA inhibitors have recently been developed as novel drugs for the management of anemia. These drugs could, therefore, be illicitly used like recombinant human erythropoietin to improve performance in sports. To examine alterations in levels of plasma protein after administration of GATA inhibitors, proteomic analyses were conducted on mouse plasma samples treated with the potent GATA inhibitor K-11706. The analysis based on gel electrophoresis identified 41 protein spots differentially expressed when compared with normal plasma. Each spot was identified with liquid chromatography coupled to tandem mass spectrometry and 2 of them, fetuin-B and prothrombin, were verified by Western blotting. The results showed that the expression of fetuin-B in mice plasma was increased by K-11706, but not by recombinant human erythropoietin or hypoxia. These results suggest the potential of proteomic-based approaches as tools to identify biomarkers for the illegal use of novel drugs (e. g., GATA inhibitors). Also, fetuin-B could be a sensitive marker for the detection of abuse of GATA inhibitors.

References

  • 1 Banine F, Gangneux C, Lebreton JP, Frebourg T, Salier JP. Structural and functional analysis of the 5’-transcription control region for the human α2-HS glycoprotein gene.  Biochim Biophys. 1998;  1398 1-8
  • 2 Baoutina A, Alexander IE, Rasko JE, Emslie KR. Developing strategies for detection of gene doping.  J Gene Med. 2008;  10 3-20
  • 3 Barroso O, Mazzoni I, Rabin O. Hormone abuse in sports: the antidoping perspective.  Asian J Androl. 2008;  10 391-402
  • 4 Belalcazar V, Gutierrez Gallego R, Llop E, Segura J, Pascual JA. Assessing the instability of the isoelectric focusing patterns of erythropoietin in urine.  Electrophoresis. 2006;  27 4387-4395
  • 5 Delanghe JR, Joyner MJ. Testing for recombinant human erythropoietin.  J Appl Physiol. 2008;  105 395-396
  • 6 Denecke B, Gräber S, Schäfer C, Heiss A, Wöltje M, Jahnen-Dechent W. Tissue distribution and activity testing suggest a similar but not identical function of fetuin-B and fetuin-A.  Biochem J. 2003;  376 135-145
  • 7 Dziegielewska KM, Andersen NA, Saunders NR. Modification of macrophage response to lipopolysaccharide by fetuin.  Immunol Lett. 1998;  60 31-35
  • 8 Gareau R, Caron C, Brisson GR. Exercise duration and serum erythropoietin level.  Horm Metab Res. 1991;  23 355
  • 9 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 10 Horie M, Naka A, Matsumoto K, Hirano I, Yamamoto M, Imagawa S. Analysis of erythropoietic signal using in vivo β-globin LCR luciferase transgenic mice and application to doping material detection.  Japanese journal of clinical sports medicine. 2009;  17 239-246 (in Japanese)
  • 11 Hsu SJ, Nagase H, Balmain A. Identification of Fetuin-B as a member of a cystatin-like gene family on mouse chromosome 16 with tumor suppressor activity.  Genome. 2004;  47 931-946
  • 12 Imagawa S, Matsumoto K, Horie M, Ohkoshi N, Nagasawa T, Doi T, Suzuki N, Yamamoto M. Does K-11706 enhance endurance performance and why?.  Int J Sports Med. 2007;  28 928-933
  • 13 Imagawa S, Nakano Y, Obara N, Suzuki N, Doi T, Kodama T, Nagasawa T, Yamamoto M. A GATA-specific inhibitor (K-7174) rescues anemia induced by IL-1α, TNF-α, or L-NMMA.  FASEB J. 2003;  17 1742-1744
  • 14 Imagawa S, Suzuki N, Ohmine K, Obara N, Mukai HY, Ozawa K, Yamamoto M, Nagasawa T. GATA suppresses erythropoietin gene expression through GATA site in mouse erythropoietin gene promoter.  Int J Hematol. 2002;  75 376-381
  • 15 Imagawa S, Yamamoto M, Miura Y. Negative regulation of the erythropoietin gene expression by the GATA transcription factors.  Blood. 1997;  89 1430-1439
  • 16 Jelkmann W. Erythropoiesis stimulating agents and techniques: a challenge for doping analysts.  Curr Med Chem. 2009;  16 1236-1247
  • 17 Jelkmann W. Molecular biology of erythropoietin.  Intern Med. 2004;  43 649-659
  • 18 Kawashima Y, Fukuno T, Satoh M, Takahashi H, Matsui T, Maeda T, Kodera Y. A simple and highly reproducible method for discovering potential disease markers in low abundance serum proteins.  J Electrophoresis. 2009;  57 13-18
  • 19 Kawashima Y, Fukutomi T, Tomonaga T, Takahashi H, Nomura F, Maeda T, Kodera Y. High-yield peptide-extraction method for the discovery of subnanomolar biomarkers from small serum samples.  J Proteome Res. 2010;  9 1694-1705
  • 20 Llop E, Gutierrez-Gallego R, Belalcazar V, Gerwig GJ, Kamerling JP, Segura J, Pascual JA. Evaluation of protein N-glycosylation in 2-DE: erythropoietin as a study case.  Proteomics. 2007;  7 4278-4291
  • 21 Llop E, Gutierrez-Gallego R, Segura J, Mallorqui J, Pascual JA. Structural analysis of the glycosylation of gene-activated erythropoietin (epoetin delta, Dynepo).  Anal Biochem. 2008;  383 243-254
  • 22 Nakano Y, Imagawa S, Matsumoto K, Stockmann C, Obara N, Suzuki N, Doi T, Kodama T, Takahashi S, Nagasawa T, Yamamoto M. Oral administration of K-11706 inhibits GATA binding activity, enhances hypoxia-inducible factor 1 binding activity, and restores indicators in an in vivo mouse model of anemia of chronic disease.  Blood. 2004;  104 4300-4307
  • 23 Olivier E, Soury E, Ruminy P, Husson A, Parmentier F, Daveau M, Salier JP. Fetuin-B, a second member of the fetuin family in mammals.  Biochem J. 2000;  2 589-597
  • 24 Osawa M, Umetsu K, Sato M, Ohki T, Yukawa N, Suzuki T, Takeichi S. Structure of the gene encoding human α2-HS glycoprotein (AHSG).  Gene. 1997;  196 121-125
  • 25 Schmidt W, Eckardt KU, Hilgendorf A, Strauch S, Bauer C. Effects of maximal and submaximal exercise under normoxic and hypoxic conditions on serum erythropoietin level.  Int J Sports Med. 1991;  12 457-461
  • 26 Schuster SJ, Badiavas EV, Costa-Giomi P, Weinmann R, Erslev AJ, Caro J. Stimulation of erythropoietin gene transcription during hypoxia and cobalt exposure.  Blood. 1989;  73 13-16
  • 27 Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD. Characterization of the low molecular weight human serum proteome.  Mol Cell Proteomics. 2003;  2 1096-1103
  • 28 Umetani M, Nakao H, Doi T, Iwasaki A, Ohtaka M, Nagoya T, Mataki C, Hamakubo T, Kodama T. A novel cell adhesion inhibitor, K-7174, reduces the endothelial VCAM-1 induction by inflammatory cytokine, acting through the regulation of GATA.  Biochem Biophys Res Commun. 2000;  272 370-374

Correspondence

Masaki Horie,MS 

Graduate School of Comprehensive

Human Sciences

University of Tsukuba

Department of Sports Medicine

1-1-1Tennodai

305-8577 Tsukuba

Japan

Phone: +81/29/853 5600 (8353)

Fax: +81/29/853 5600 (8353)

Email: masaki-horie07@ob.md.tsukuba.ac.jp

    >