Int J Sports Med 2011; 32(8): 586-590
DOI: 10.1055/s-0031-1275299
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Response Training Shortens Visuo-Motor Related Time in Athletes

K. Yotani1 , H. Tamaki2 , A. Yuki3 , H. Kirimoto2 , K. Kitada4 , F. Ogita1 , H. Takekura1
  • 1National Institute of Fitness and Sports in KANOYA, Physiological Sciences, Kanoya, Japan
  • 2Niigata University of Health and Welfare, Department of Physical Therapy, Niigata, Japan
  • 3Aichi University of Education, Department of Health and Physical Education, Kariya, Japan
  • 4Ishikawa National College of Technology, Department of General Education, Kahoku, Japan
Further Information

Publication History

accepted after revision February 14, 2011

Publication Date:
11 May 2011 (online)

Abstract

In the present study, we aimed to determine whether response training shortens visuo-motor related time in athletes performing a simple reaction task. 14 healthy male athletes were included in the study. Subjects were randomly divided into 2 groups: a training group, which underwent response training consisting of a mastication task in response to a visual signal, and a non-training (control) group, which did not undergo response training. Pre-motor time and transcranial magnetic stimulation over the primary motor cortex for recording motor evoked potentials were measured in the control group, and before and after the response training session in the training group. Both pre-motor time and visuo-motor related time, but not motor evoked potential latency, were significantly reduced after response training in the training group. Subjects who had a longer visuo-motor related time before training showed a greater reduction in visuo-motor related time after training. These results suggest that visuo-motor related time before training could be useful as a predictor of the reduction in reaction time following response training.

References

  • 1 Del Percio C, Rossini PM, Marzano N, Iacoboni M, Infarinato F, Aschieri P, Lino A, Fiore A, Toran G, Babiloni C, Eusebi F. Is there a “neural efficiency” in athletes? A high-resolution EEG study.  Neuroimage. 2008;  42 1544-1553
  • 2 Delpont E, Dolisi C, Suisse G, Bodino G, Gastaud M. Visual evoked potentials: differences related to physical activity.  Int J Sports Med. 1991;  12 293-298
  • 3 DiFabio RP. Reliability of computerized surface electromyography for determining the onset of muscle activity.  Phys Ther. 1987;  67 43-48
  • 4 Evarts EV. Pyramidal tract activity associated with a conditioned hand movement in the monkey.  J Neurophysiol. 1966;  29 1011-1127
  • 5 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 6 Hayashi S, Hasegawa Y, Yahagi S, Kasai T. Modulation of motor evoked potentials induced by motor imagery: an analysis of trained and untrained Kendoists using a transcranial magnetic stimulation (TMS) method.  Jpn J Phys Educ Hlth Sport Sci. 2001;  46 47-59
  • 7 Iacoboni M. Visuo-motor integration and control in the human posterior parietal cortex: Evidence from TMS and fMRI.  Neuropsychologia. 2006;  44 2691-2699
  • 8 Iriki A, Pavlides C, Keller A, Asanuma H. Long-term potentiation in the motor cortex.  Science. 1989;  245 1385-1387
  • 9 Johansen-Berg H, Dawes H, Guy C, Smith SM, Wade DT, Matthews PM. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy.  Brain. 2002;  125 2731-2742
  • 10 Kaas JH. Plasticity of sensory and motor maps in adult mammals.  Annu Rev Neurosci. 1991;  14 137-167
  • 11 Kiers L, Fernando B, Tomkins D. Facilitatory effect of thinking about movement on magnetic motor-evoked potentials.  Electroencephalogr Clin Neurophysiol. 1997;  105 262-268
  • 12 Kim J, Lee HM, Kim WJ, Park HJ, Kim SW, Moon DH, Woo M, Tennant LK. Neural correlates of pre-performance routines in expert and novice archers.  Neurosci Lett. 2008;  445 236-241
  • 13 Lee JB, Matsumoto T, Othman T, Yamauchi M, Taimura A, Kaneda E, Ohwatari N, Kosaka M. Coactivation of the flexor muscles as a synergist with the extensors during ballistic finger extension movement in trained kendo and karate athletes.  Int J Sports Med. 1999;  20 7-11
  • 14 Lin JW, Faber DS. Modulation of synaptic delay during synaptic plasticity.  Trends Neurosci. 2002;  25 449-455
  • 15 McMillan AS, Watson C, Walshaw D. Transcranial magnetic-stimulation mapping of the cortical topography of the human masseter muscle.  Arch Oral Biol. 1998;  43 925-931
  • 16 Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys.  J Neurosci. 1996;  16 785-807
  • 17 Oishi K, Toma K, Bagarinao ET, Matsuo K, Nakai T, Chihara K, Fukuyama H. Activation of the precuneus is related to reduced reaction time in serial reaction time tasks.  Neurosci Res. 2005;  52 37-45
  • 18 Ozmerdivenli R, Bulut S, Bayar H, Karacabey K, Ciloglu F, Peker I, Tan U. Effects of exercise on visual evoked potentials.  Int J Neurosci. 2005;  115 1043-1050
  • 19 Pearce AJ, Thickbroom GW, Byrnes ML, Mastaglia FL. Functional reorganisation of the corticomotor projection to the hand in skilled racquet players.  Exp Brain Res. 2000;  130 238-243
  • 20 Perrett DI, Rolls ET, Caan W. Visual neurones responsive to faces in the monkey temporal cortex.  Exp Brain Res. 1982;  47 329-342
  • 21 Rioult-Pedotti MS, Friedman D, Donoghue JP. Learning-induced LTP in neocortex.  Science. 2000;  290 533-536
  • 22 Sakamoto K, Nakata H, Kakigi R. The effect of mastication on human cognitive processing: a study using event-related potentials.  Clin Neurophysiol. 2009;  120 41-50
  • 23 Sakamoto T, Porter LL, Asanuma H. Long-lasting potentiation of synaptic potentials in the motor cortex produced by stimulation of the sensory cortex in the cat: a basis of motor learning.  Brain Res. 1987;  413 360-364
  • 24 Shiozawa S, Komiyama T. Measurement of reaction time.  Jpn J Phys Ther. 2005;  22 57-65
  • 25 Taddei F, Viggiano MP, Mecacci L. Pattern reversal visual evoked potentials in fencers.  Int J Psychophysiol. 1991;  11 257-260
  • 26 Taimela S. Information processing and accidental injuries.  Sports Med. 1992;  14 366-375
  • 27 van Hedel HJ, Murer C, Dietz V, Curt A. The amplitude of lower leg motor evoked potentials is a reliable measure when controlled for torque and motor task.  J Neurol. 2007;  254 1089-1098
  • 28 Yotani K, Imaizumi H, Kirimoto H, Kitada K, Tamaki H, Ogita F, Takekura H. Reaction and action time analysis for kendo strikes in response to light signals using an electromyography.  Jpn J Physiol Anthropol. 2007;  12 139-146

Correspondence

Kengo Yotani

National Institute of Fitness and

Sports in KANOYA

Physiological Sciences

1 Shiromizu

Kanoya

Kagosima

Japan

891-2393

Phone: +81/994/464 934

Fax: +81/994/464 934

Email: yotani@nifs-k.ac.jp

    >