Int J Sports Med 2011; 32(9): 693-697
DOI: 10.1055/s-0031-1275358
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

V˙O2 Slow Component is Independent from Critical Power

L. Bosquet1 , 2 , M. Larrouturou3 , O. Lheureux3 , H. Carter4
  • 1Faculty of Sport Sciences (EA3813), University of Poitiers, France
  • 2Department of Kinesiology, University of Montreal, Canada
  • 3Faculty of Sport Sciences, University of Pau, France
  • 4Faculty of Sport Sciences, University of Brighton, United Kingdom
Further Information

Publication History

accepted after revision March 01, 2011

Publication Date:
12 May 2011 (online)

Abstract

The aim of this study was to determine whether the amplitude of the V˙O2 slow component was dependent from Critical Power (CP; the slope of the linear time – distance relationship) in individuals matched for V˙O2 peak. 30 moderately-trained endurance athletes completed a maximal graded exercise test, 2 randomly ordered constant power tests at 90 and 100% of peak power output (PPO), and 2 constant duration test of 6 min at 30% of the difference between CP and PPO. Afterwards, participants were ranked according to their relative CP (%PPO; a direct measure of aerobic endurance). The median third was excluded to form a low aerobic endurance group (LEG) and a high aerobic endurance group (HEG). A t-test revealed no difference between LEG and HEG in peak oxygen consumption, but a large difference in their relative CP (p<0.001, effect size=3.2). A′2 was similar between groups (626±96 and 512±176 ml, corresponding to 26±4 and 24±8% of end exercise oxygen consumption, respectively; NS) and was not associated with relative CP (r=0.10; NS). These results suggest that increasing CP probably extends the range of exercise intensities over which the V˙O2 slow component does not develop, but does not decrease the amplitude of this phenomenon once it occurs.

References

  • 1 Barstow TJ, Jones AM, Nguyen PH, Casaburi R. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise.  J Appl Physiol. 1996;  81 1642-1650
  • 2 Bell C, Paterson DH, Babcock MA, Cunningham DA. Characteristics of the V˙O2 slow component during heavy exercise in humans aged 30 to 80 years.  Adv Exp Med Biol. 1998;  450 219-222
  • 3 Billat VL, Koralstein JP. Significance of the velocity at V˙O2max and time to exhaustion at this velocity.  Sports Med. 1996;  22 90-108
  • 4 Bosquet L, Duchene A, Lecot F, Dupont G, Leger L. Vmax estimate from three-parameter critical velocity models: validity and impact on 800 m running performance prediction.  Eur J Appl Physiol. 2006;  97 34-42
  • 5 Bosquet L, Leger L, Legros P. Methods to determine aerobic endurance.  Sports Med. 2002;  32 675-700
  • 6 Burnley M, Jones A. Oxygen uptake kinetics as a determinant of sports performance.  Eur J Sport Sci. 2007;  7 63-79
  • 7 Cappon JP, Ipp E, Brasel JA, Cooper DM. Acute effects of high fat and high glucose meals on the growth hormone response to exercise.  J Clin Endocrinol Metab. 1993;  76 1418-1422
  • 8 Carter H, Jones AM, Barstow TJ, Burnley M, Williams CA, Doust JH. Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison.  J Appl Physiol. 2000;  89 899-907
  • 9 Cohen J. Statistical Power Analysis for the Behavioral Sciences.. Hillsdale (NJ): Lawrence Erlbaum Associates; 1988: 1-587
  • 10 Coyle EF, Coggan AR, Hopper MK, Walters TJ. Determinants of endurance in well-trained cyclists.  J Appl Physiol. 1988;  64 2622-2630
  • 11 Di Prampero PE, Atchou G, Bruckner JC, Moia C. The energetics of endurance running.  Eur J Appl Physiol. 1986;  55 259-266
  • 12 Foster C, Costill DL, Daniels JT, Fink WJ. Skeletal muscle enzyme activity, fiber composition and V˙O2 max in relation to distance running performance.  Eur J Appl Physiol. 1978;  39 73-80
  • 13 Gaesser GA, Carnevale TJ, Garfinkel A, Walter DO, Womack CJ. Estimation of critical power with non linear and linear models.  Med Sci Sports Exerc. 1995;  27 1430-1438
  • 14 Gastin PB. Energy system interaction and relative contribution during maximal exercise.  Sports Med. 2001;  31 725-741
  • 15 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 16 Housh DJ, Housh TJ, Bauge SM. A methodological consideration for the determination of critical power and anaerobic work capacity.  Res Q Exerc Sport. 1990;  61 406-409
  • 17 Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness.  Sports Med. 2000;  29 373-386
  • 18 Koga S, Poole DC, Shiojiri T, Kondo N, Fukuba Y, Miura A, Barstow TJ. Comparison of oxygen uptake kinetics during knee extension and cycle exercise.  Am J Physiol. 2005;  288 R212-R220
  • 19 Lacour JR, Flandrois R. Role of aerobic metabolism in prolonged intensive exercise.  J Physiol (Paris). 1977;  73 89-130
  • 20 Monod H, Scherrer J. The work capacity of a synergic muscular group.  Ergonomics. 1965;  8 329-337
  • 21 Morgan DW, Baldini FD, Martin PE, Kohrt WM. Ten kilometer performance and predicted velocity at V˙O2 max among well-trained male runners.  Med Sci Sports Exerc. 1989;  21 78-83
  • 22 Neder JA, Jones PW, Nery LE, Whipp BJ. The effect of age on the power/duration relationship and the intensity domain limits in sedentary men.  Eur J Appl Physiol. 2000;  82 326-332
  • 23 Peronnet F, Massicotte D. Table of nonprotein respiratory quotient: an update.  Can J Appl Physiol. 1991;  16 23-29
  • 24 Peronnet F, Thibault G. Mathematical analysis of running performance and world running records.  J Appl Physiol. 1989;  67 453-465
  • 25 Peronnet F, Thibault G, Ledoux M. Performance in endurance events: energy balance, nutrition and temperature regulation.. London, Canada: Spodym; 1987
  • 26 Poole DC, Barstow TJ, Gaesser GA, Willis WT, Whipp BJ. VO2 slow component: physiological and functional significance.  Med Sci Sports Exerc. 1994;  26 1354-1358
  • 27 Poole DC, Schaffartzik W, Knight DR, Derion T, Kennedy B, Guy HJ, Prediletto R, Wagner PD. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans.  J Appl Physiol. 1991;  71 1245-1260
  • 28 Pringle JSM, Doust JH, Carter H, Tolfrey K, Campbell IT, Jones AM. Oxygen uptake kinetics during moderate, heavy and severe intensity submaximal exercise in humans: the influence of muscle fiber type and capillarisation.  Eur J Appl Physiol. 2003;  89 289-300
  • 29 Vandewalle H, Vautier JF, Kachouri M, Lechevalier JM, Monod H. Work-exhaustion time relationship and the critical power concept.  J Sports Med Phys Fit. 1997;  37 89-102
  • 30 Wasserman K, Whipp BJ, Koyl SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise.  J Appl Physiol. 1973;  35 236-243
  • 31 Whipp BJ. Dynamics of pulmonary gas exchange.  Circulation. 1987;  76 VI18-VI28
  • 32 Whipp BJ. Domains of aerobic function and their limiting parameters.  The Physiology and Pathophysiology of Exercise Tolerance. Steinacker JM, Ward SA (eds). 1996;  83-89
  • 33 Whipp BJ, Ward SA, Wasserman K. Respiratory markers of the anaerobic threshold.  Adv Cardiol. 1986;  35 47-64

Correspondence

Prof. L. Bosquet

Faculty of Sport Sciences

University of Poitiers

8 allée Jean Monnet

86000 Poitiers

France

Phone: +33/549/453 340

Fax: +33/549/453 396

Email: laurent.bosquet@univ-poitiers.fr

    >