Horm Metab Res 2011; 43(7): 452-457
DOI: 10.1055/s-0031-1277187
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Supraphysiological Triiodothyronine Doses Diminish Leptin and Adiponectin Gene Expression, but do not Alter Resistin Expression in Calorie Restricted Obese Rats

R. A. M. Luvizotto1 , M. T. Síbio1 , R. M. C. Olímpio1 , A. F. Nascimento1 , A. P. Lima-Leopoldo2 , A. S. Leopoldo1 , 2 , C. R. Padovani3 , A. C. Cicogna1 , C. R. Nogueira1
  • 1Department of Clinical Medicine, Botucatu School of Medicine, UNESP – University of São Paulo State, Botucatu, São Paulo, Brazil
  • 2Departament of Sports, Center of Physical Education and Sports, UFES – Federal University of Espirito Santo, Vitória, Espírito Santo, Brazil
  • 3Department of Biostatistics, Institute of Biological Sciences, UNESP – University of São Paulo State, Botucatu, São Paulo, Brazil
Further Information

Publication History

received 08.12.2010

accepted 12.04.2011

Publication Date:
09 May 2011 (online)

Abstract

Thyroid hormones regulate energy balance and act on adipokines. However, while it is unclear what the effects are of calorie restriction and high doses of triiodothyronine (T3) on adipokines in obesity, thyroid hormones are illicitly administered in isolation or in association with a hypocaloric diet as an obesity treatment. The present study determined the effect of T3 on serum concentrations and gene expression of the adipokines leptin, resistin, and adiponectin in calorie-restricted obese rats. Male Wistar rats received a hypercaloric diet for 20 weeks followed by calorie restriction for 8 weeks. The animals were then randomly divided into 3 groups: calorie restriction (OR), OR with 5 μg of T3/100 g BW (RS1), and OR with 25 μg of T3/100 g BW (RS2) for 2 weeks. Blood and adipose tissue samples were collected for biochemical, hormonal, and gene expression analyses. Serum concentrations of leptin (OR: 3.7±0.6, RS1: 3.8±1, RS2 0.2±0.07 ng/dl) and resistin (OR: 2.5±0.6, RS1: 2.5±0.5, RS2 1.6±0.3 ng/dl) were diminished at the higher dose, while serum adiponectin (OR: 31±7, RS1: 24±5, RS2 26±7 ng/dl) levels were lower in the low dose group. Administration of T3 reduced leptin gene expression (OR: 0.91±0.1, RS1: 0.95±0.1, RS2 0.22±0.1) only at the higher dose, resistin expression (OR: 1.06±0.2, RS1: 1.04±0.1, RS2 0.88±0.2) was not influenced by T3 treatment, and adiponectin expression (OR: 1.55±0.5, RS1: 0.95±0.15, RS2 0.97±0.13) was diminished independent of the T3 dose. These results indicate that T3, directly or indirectly, inhibits the expression of leptin and adiponectin in calorie restricted obese animals.

References

  • 1 Flier JS, Harris M, Hollenberg AN. Leptin, nutrition, and the thyroid: the why, the wherefore, and the wiring.  J Clin Invest. 2000;  105 859-861
  • 2 Feldt-Rasmussen U. Thyroid and leptin.  Thyroid. 2007;  17 413-419
  • 3 Reinerh T, Andler W. Thyroid hormones before and after weight loss in obesity.  Archives of Disease in Childhood. 2002;  87 320-326
  • 4 Douyon L, Schteingart DE. Effect of obesity and starvation on thyroid hormone, growth hormone, and cortisol secretion.  Endocrinol Metab Clin North Am. 2002;  31 173-189
  • 5 Ahima RS. Leptin and neuroendocrinology of fasting.  Front Horm Res. 2000;  26 42-56
  • 6 Krotkiewski M. Thyroid hormones and treatment of obesity.  Int J Obes Relat Metab Disord. 2000;  24 S116-S119
  • 7 Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases.  Endocr Rev. 2002;  23 38-89
  • 8 Pinkney JH, Goodrick SJ, Katz J, Johnson AB, Lightman SL, Coppack SW, Mohamed-Ali V. Leptin and the pituitary-thyroid axis: a comparative study in lean, obese, hypothyroid and hyperthyroid subjects.  Clin Endocrinol. 1998;  49 583-588
  • 9 Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation, and immunity.  Nat Rev Immunol. 2006;  6 772-783
  • 10 Ahima RS, Qi Y, Singhal NS, Jackson MB, Scherer PE. Brain adipocytokine action and metabolic regulation.  Diabetes. 2006;  55 (S 02) S145-S154
  • 11 Viguerie N, Vidal H, Arner P, Holst C, Verdich C, Avizou S, Astrup A, Saris WH, Macdonald IA, Klimcakova E, Clément K, Martinez A, Hoffstedt J, Sørensen TI, Langin D. Adipose tissue gene expression in obese subjects during low-fat and high-fat hypocaloric diets.  Diabetologia. 2005;  48 123-131
  • 12 Giacobino JP. Uncoupling proteins, leptin and obesity: an update review.  Ann N Y Acad Sci. 2002;  967 398-402
  • 13 Legradi G, Emerson CH, Ahima RS, Flier JS, Lechan RM. Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus.  Endocrinol. 1997;  138 2569-2576
  • 14 Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS. Role of leptin in the neuroendocrine response to fasting.  Nature. 1996;  382 250-252
  • 15 Menendez C, Baldelli R, Camina JP, Escudero B, Peino R, Dieguez C, Casanueva FF. TSH stimulates leptin secretion by a direct effect on adipocytes.  J Endocrinol. 2003;  176 7-12
  • 16 Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA. The hormone resistin links obesity to diabetes.  Nature. 2001;  409 307-312
  • 17 Holcomb IN, Kabakoff RC, Chan B, Baker TW, Gurney A, Henzel W, Nelson C, Lowman HB, Wright BD, Skelton NJ, Frantz GD, Tumas DB, Peale Jr FV, Shelton DL, Hébert CC. FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family.  EMBO J. 2000;  19 4046-4055
  • 18 Meier U, Gressner AM. Endocrine Regulation of Energy Metabolism: Review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin.  Clin Chem. 2004;  50 1511-1525
  • 19 Nogueiras R, Gualillo O, Caminos JE, Casanueva FF, Diéguez C. Regulation of resistin by gonadal, thyroid hormone, and nutritional status.  Obes Res. 2003;  11 408-414
  • 20 Krassas GE, Pontikides N, Loustis K, Koliakos G, Constantinidis T, Panidis D. Resistin levels in hyperthyroid patients before and after restoration of thyroid function: relationship with body weight and body composition.  Eur J Endocrinol. 2005;  153 217-221
  • 21 Iglesias P, Alvarez FP, Codoceo R, Díez JJ. Serum concentrations of adipocytokines in patients with hyperthyroidism and hypothyroidism before and after control of thyroid function.  Clin Endocrinol (Oxf). 2003;  59 621-629
  • 22 Berg AH, Combs TP, Du X, Brownlee M, Scherer PE. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action.  Nat Med. 2001;  7 947-953
  • 23 Nascimento AF, Sugizaki MM, Leopoldo AS, Lima-Leopoldo AP, Nogueira CR, Novelli EL, Padovani CR, Cicogna AC. Misclassification probability as obese or lean in hypercaloric and normocaloric diet.  Biol Res. 2008;  41 253-259
  • 24 Silva FG, Giannocco G, Santos MF, Nunes MT. Thyroid hormone induction of actin polymerization in somatotrophs of hypothyroid rats: potential repercussions in growth hormone synthesis and secretion.  Endocrinol. 2006;  147 5777-5785
  • 25 Giannocco G, Santos RA, Nunes MT. Thyroid hormone stimulates myoglobin gene expression in rat cardiac muscle.  Mol Cell Endocrinol. 2004;  226 19-26
  • 26 Fernández-Galaz C, Fernández-Agulló T, Pérez C, Peralta S, Arribas C, Andrés A, Carrascosa JM, Ros M. Long-term food restriction prevents ageing-associated central leptin resistance in wistar rats.  Diabetologia. 2002;  45 997-1003
  • 27 Minatoya Y, Ito K, Kagaya Y, Asaumi Y, Takeda M, Nakayama M. Depressed contractile reserve and impaired calcium handling of cardiac myocytes from chronically unloaded hearts are ameliorated with the administration of physiological treatment dose of T3 in rats.  Acta Physiol. 2007;  189 221-231
  • 28 Kokkinos A, Mourouzis I, Kyriaki D, Pantos C, Katsilambros N, Cokkinos DV. Possible implications of leptin, adiponectin and ghrelin in the regulation of energy homeostasis by thyroid hormone.  Endocrine. 2007;  32 30-32
  • 29 Levin BE, Dunn-Meynell AA. Reduced central leptin sensitivity in rats with diet-induced obesity.  Am J Physiol Regul Integr Comp Physiol. 2002;  283 R941-R948
  • 30 Boustany CM, Bharadwaj K, Daugherty A, Brown DR, Randall DC, Cassis LA. Activation of the systemic and adipose renin-angiotensin system in rats with diet-induced obesity and hypertension.  Am J Physiol Regul Integr Comp Physiol. 2004;  287 R943-R949
  • 31 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta]CT method.  Methods. 2001;  25 402-408
  • 32 Alonso A, Fernández Y, Fernández R, Ordóñez P, Moreno M, Díaz F, Patterson AM, González C. Effect of food restriction on the insulin signalling pathway in rat skeletal muscle and adipose tissue.  J Nutr Biochem. 2005;  16 602-609
  • 33 Spindler SR. Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction.  Mech Ageing Dev. 2005;  126 960-966
  • 34 Moore R, Grant AM, Howard AN, Mills IH. Treatment of obesity with triiodothyronine and a very-low-calorie liquid formula diet.  Lancet. 1980;  1 223-226
  • 35 Moreira-Andrés MN, Del Cañizo-Gómez FJ, Black EG, Hoffenberg R. Long-term evaluation of thyroidal response to partial calorie restriction in obesity.  Clin Endocrinol (Oxf). 1981;  15 621-626
  • 36 Biondi B, Palmieri EA, Fazio S, Cosco C, Nocera M, Saccà L, Filetti S, Lombardi G, Perticone F. Endogenous subclinical hyperthyroidism affects quality of life and cardiac morphology and function in young and middle-aged patients.  J Clin Endocrinol Metab. 2000;  85 4701-4705
  • 37 Brennam MD, Powell C, Kaufman KR, Sun PC, Bahn RS, Nair KS. The impact of overt and subclinical hyperthyroidism on skeletal muscle.  Thyroid. 2006;  16 375-380
  • 38 Magsino Junior C, Hamouda W, Ghanim H, Browne R, Aljada A, Dandona P. Effect of triiodothyronine on reactive oxygen species generation by leukocytes, indices of oxidative damage, and antioxidant reserve.  Metabolism. 2000;  49 799-803
  • 39 Zabrocka L, Klimek J, Swierczynski J. Evidence that triiodothyronine decreases rat serum leptin concentration by down-regulation of leptin gene expression in white adipose tissue.  Life Sciences. 2006;  79 1114-1120
  • 40 Larsen PR, Davies TF, Schlumberger MJ, Hay ID. Thyroid physiology and diagnostic evaluation of patients with thyroid disorders. In:, Kronenberg HM,, Melmed S,, Polonsky KS,, Larsen PR, (eds). Williams Textbook of Endocrinology. 11th ed. Philadelphia: Saunders Elsevier; 2008: 299-332
  • 41 Krotkiewski M. Thyroid hormones in the pathogenesis and treatment of obesity.  Eur J Pharmacol. 2002;  440 85-98
  • 42 Dimitriadis GD, Raptis SA. Thyroid hormone excess and glucose intolerance.  Exp Clin Endocrinol Diab. 2001;  109 S225-S239
  • 43 Setia S, Sridhar MG, Koner BC, Bobby Z, Bhat V, Chaturvedula L. Increased insulin sensitivity in intrauterine growth retarded newborns – Do thyroid hormones play a role?.  Clinica Chimica Acta. 2006;  4p
  • 44 Kung A, Pang R, Lander I, Lam k, Janus E. Changes in serum lipoprotein (a) and lipids during treatment of hyperthyroidism.  Clin Chem. 1995;  41 226-231
  • 45 Duntas LH. Thyroid disease and lipids.  Thyroid. 2002;  12 287-293
  • 46 Riis ALD, Gravholt CH, Djurhuus CB, Norrelund H, Jorgensen JOL, Weeke J, Moller N. Elevated regional lipolysis in hyperthyroidism.  J Clin Endocrinol Metab. 2002;  87 4747-4753
  • 47 Holmes JH, Lambourne LJ. The relation between plasma free fatty acid concentration and the digestible intake cattle.  Rev Vet Sci. 1970;  11 27-36
  • 48 Birnbaum MJ. Lipolysis: more than just a lipase.  J Cell Biol. 2003;  161 1011-1012
  • 49 Escobar-Morreale HF, Rey FE, Escobar GM. Thyroid hormones influence serum leptin concentrations in the rat.  Endocrinol. 1997;  138 4485-4488
  • 50 Näslund E, Andersson I, Degerblad M, Kogner P, Kral JG, Rössner S, Hellström PM. Associations of leptin, insulin resistance and thyroid function with long-term weight loss in dieting obese men.  J Int Med. 2000;  248 299-308
  • 51 Syed MA, Thompson MP, Pachucki J, Burmeister LA. The effect of thyroid hormone on size of fat depots accounts for most of the changes in leptin mRNA and serum levels in the rat.  Thyroid. 1999;  9 503-512
  • 52 Wolfe BE, Jimerson DC, Orlova C, Mantozoros CS. Effect of dieting on plasma leptin, soluble leptin receptor, adiponectin and resistin levels in healthy volunteers.  Clin Endocrinol. 2004;  61 332-338
  • 53 Brabant G, Horn R, Von Zur Mühlen A, Mayr B, Wurster U, Heidenreich F, Schnabel D, Grüters-Kieslich A, Zimmermann-Belsing T, Feldt-Rasmussen U. Diabetologia. 2000;  43 438-442
  • 54 Frederich RC, Löllmann B, Hamann A, Napolitano-Rosen A, Kahn BB, Lowell BB, Flier JS. Expression of ob mRNA and its encoded protein in rodents – impact of nutrition and obesity.  J Clin Invest. 1995;  96 1658-1663
  • 55 Yoshida T, Monkawa T, Hayashi M, Saruta T. Regulation of expression of leptin mRNA and secretion of leptin by thyroid hormone in 3T3-L1 adipocytes.  Biochem Biophys Res Commun. 1997;  232 822-826
  • 56 Luvizotto RAM, Conde SJ, Sibio MT, Nascimento AF, Lima-Leopoldo AP, Leopoldo AS, Padovani CR, Cicogna AC, Nogueira CR. Administration of physiological levels of triiodothyronine increases leptin expression in calorie-restricted obese rats, but does not influence weight loss.  Metabolism. 2010;  59 1-6
  • 57 Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.  Biochem Biophys Res Commun. 1999;  257 79-83
  • 58 Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.  Arterioscler Thromb Vasc Biol. 2000;  20 1595-1599
  • 59 Yang WS, Jeng CY, Wu TJ, Tanaka S, Funahashi T, Matsuzawa Y, Wang JP, Chen CL, Tai TY, Chuang LM. Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients.  Diabetes Care. 2002;  25 376-380
  • 60 Hirose H, Kawai T, Yamamoto Y, Taniyama M, Tomita M, Matsubara K, Okazaki Y, Ishii T, Oguma Y, Takei I, Saruta T. Effects of pioglitazone on metabolic parameters, body fat distribution, and serum adiponectin levels in Japanese male patients with type 2 diabetes.  Metabolism. 2002;  51 314-317
  • 61 Goldstein BJ, Scalia R. Adipokines and vascular disease in diabetes.  Curr Diab Rep. 2007;  7 25-33
  • 62 Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway.  Circulation. 2000;  102 1296-1301
  • 63 Aragao CN, Souza LL, Cabanelas A, Oliveira KJ, Pazos-Moura CC. Effect of experimental hypo- and hyperthyroidism on serum adiponectin.  Metabolism. 2007;  56 6-11
  • 64 Santini F, Marsili A, Mammoli C, Valeriano R, Scartabelli G, Pelosini C, Giannetti M, Centoni R, Vitti P, Pinchera A. Serum concentrations of adiponectin and leptin in patients with thyroid dysfunctions.  J Endocrinol Invest. 2004;  27 RC5-RC7
  • 65 Yaturu S, Prado S, Grimes SR. Changes in adipocyte hormones leptin, resistin, and adiponectin in thyroid dysfunction.  J Cell Biochem. 2004;  93 491-496
  • 66 Saito T, Kawano T, Saito T, Ikoma A, Namai K, Tamemoto H, Kawakami M, Ishikawa SE. Elevations of serum adiponectin levels in Basedow disease.  Metabolism. 2005;  54 1461-1466

Correspondence

R. A. M. Luvizotto

Botucatu School of Medicine

University of São Paulo State

– UNESP

Distrito de Rubião Jr s/n

Botucatu SP CEP: 18618-000

Brazil

Phone: +55/14/3881 6213

Fax: +55/14/3881 6424

Email: reluvizotto@yahoo.com

    >