Sprache · Stimme · Gehör 2011; 35(2): e58-e66
DOI: 10.1055/s-0031-1277224
Schwerpunktthema

© Georg Thieme Verlag KG Stuttgart · New York

Genetik der Legasthenie

Genetics of Developmental DyslexiaT. Grimm1
  • 1Abteilung für Medizinische Genetik im Institut für Humangenetik der Universität Würzburg
Further Information

Publication History

Publication Date:
28 June 2011 (online)

Zusammenfassung

Die Legasthenie (Lese- und Rechtschreibstörung) ist eine der häufigsten Störungen im Kindes- und Jugendalter (Prävalenz um 4–12%). Molekulargenetische Untersuchungen haben gezeigt, dass genetische Einflüsse zweifellos eine wichtige Rolle bei der Entstehung einer Legasthenie spielen. Ist ein Kind in der Familie von einer Legasthenie betroffen, so sind oft auch Geschwister (34–45%) und/oder ein Elternteil (40–46%) betroffen. Mittels molekulargenetischer Untersuchungen wird danach geforscht, welche Gene bei der Entwicklung des Erlernens von Lesen und Rechtschreiben eine Rolle spielen. Gesichert sind bisher 7 Genorte auf den Chromosomen 15q21 (=DYX1; MIM #127700), 6p22 (=DYX2; MIM %600202), 2p15 (=DYX3; MIM %604254), 3p12-q13 (=DYX5; MIM %606896) und 18p11 (=DYX6; MIM %606616), 1p36-p34 (=DYX8; MIM %608995) und Xq27 (=DYX9; MIM %300509). Aufgrund von Segregationsanalysen und molekulargenetischen Befunden nimmt man i. d. R. einen komplexen Erbgang an. Allerdings liegt in einigen Familien ein autosomal dominanter Erbgang mit unvollständiger Penetranz vor.

Abstract

Developmental dyslexia is one of the most common disorders in childhood and adolescence (prevalence around 4–12%). Molecular genetic studies have shown that genetic factors undoubtedly play an important role in the emergence of dyslexia. If a child is affected with dyslexia, the risk for a sibling being affected is 34–45% and/or that for one parent being affected is 40–46%. Molecular genetic studies will help to find the genes that play a role in the development of learning to read and write. The chromosomal location of 7 loci are confirmed on chromosomes 15q21 (=DYX1; MIM #127700), 6p22 (=DYX2; MIM %600202), 2p15 (=DYX3; MIM %604254), 3p12-q13 (=DYX5; MIM %606896) and 18p11 (=DYX6; MIM %606616), 1p36-p34 (=DYX8; MIM %608995) und Xq27 (=DYX9; MIM %300509). On the basis of segregation analysis and molecular genetic findings, one assumes usually a complex inheritance, however, the inheritance in some families is autosomal dominant with incomplete penetrance.

Literatur

Literatur

  • 1 Berkhahn O. Über die Störung der Schriftsprachen bei Halbidioten und ihre Ähnlichkeit mit dem Stammeln.  Arch Psychiat Nervenkr. 1885;  16 78-86
  • 2 Fisher I. Case of congenital word blindness (inability to learn to read).  Ophthalmic Review. 1905;  24 315-318
  • 3 Schulte-Körne G, Deimel W, Müller K. et al Familial aggregation of spelling disability.  J Child Psychol Psychiat. 1996;  37 817-822
  • 4 Demb JB, Boyton GM, Heeger DJ. Brain activity in visual information processing in dyslexia.  Proc Natl Acad Sci. 1997;  94 13363-13366
  • 5 Esser G, Schmidt MH. Children with specific reading retardation – early determinants and long-term outcome.  Acta Paedopsychiatr. 1994;  56 229-237
  • 6 Laubenthal F. Über „kongenitale Wortblindheit”, zugleich ein Beitrag zur Klinik sog. Partieller Schwachsinnsformen und ihrer erblichen Grundlagen.  Z ges Neurol u Psychiat. 1936;  156 329
  • 7 Hallgren B. Specific dyslexia: a clinical and genetic study.  Acta Psychiat Neurol Scand. 1950;  65 ((suppl.)) 1-287
  • 8 Zahálková M, Vrzal V, Klobouková E. Genetical investigations in dyslexia.  J Med Genet. 1972;  9 48-52
  • 9 Finucci JM, Guthrie JT, Childs AL. et al The genetics of specific reading disability.  Ann Hum Genet. 1976;  40 1-23
  • 10 Pennington BF, Gilger JW, Pauls D. et al Evidence for a major gene transmission of developmental dyslexia.  JAMA. 1991;  18 1527-1534
  • 11 Wolff PH, Melngailis I. Family patterns of developmental dyslexia: clinical findings.  Am J Med Genet. 1994;  54 122-131
  • 12 Gayán J, Olson RK. Genetic and environmental influences on orthographic and phonological skills in children with reading disabilities.  Dev Neuropsychol. 2001;  20 483-507
  • 13 Harlaar N, Spinath FM, Dale PS. et al Genetic influences on early word recognition abilities and disabilities: a study of 7-year-old twins.  J Child Psychol Psychiatry. 2005;  46 373-384
  • 14 Smith SD, Kimberling WJ, Pennington BF. et al Specific reading disability: identification of an inherited form through linkage analysis.  Science. 1983;  219 1345-1347
  • 15 Smith SD, Kimberling WJ, Pennington BF. Screening for multiple genes influencing dyslexia.  Read Writ Interdisc J. 1991;  3 285-298
  • 16 Grigorenko EL, Wood FB, Meyer MS. et al Susceptibility loci for distinct components of developmental dyslexia on chromosome 6 and 15.  Am J Hum Genet. 1997;  60 27-39
  • 17 Schulte-Körne G, Grimm T, Nöthen MM. et al Evidence for linkage of spelling disability to chromosome 15.  Am J Hum Genet. 1998;  63 279-282
  • 18 Nopola-Hemmi J, Taipale M, Haltia T. et al Two translocations of chromosome 15q associated with dyslexia.  J Med Genet. 2000;  37 771-775
  • 19 Morris DW, Robinson L, Turic D. et al Family-based association mapping provides evidence for a gene for reading disability on chromosome 15q.  Hum Molec Genet. 2000;  9 843-848
  • 20 Taipale M, Kaminen N, Nopola-Hemmi J. et al A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain.  Proc Natl Acad Sci USA. 2003;  100 11553-11558
  • 21 Marino C, Giorda R, Vanzin L. et al A locus on 15q15-15qter influences dyslexia: further support from a transmission/disequilibrium study in an Italian speaking population.  J Med Genet. 2004;  41 42-46
  • 22 Chapman NH, Igo RP, Thomson JB. et al Linkage analyses of four regions previously implicated in dyslexia: confirmation of a locus on chromosome 15q.  Am J Med Genet B Neuropsychiatr Genet. 2004;  131B 67-75
  • 23 Morris DW, Ivanov D, Robinson L. et al Association analysis of two candidate phospholipase genes that map to the chromosome 15q15.1–15.3 region associated with reading disability.  Am J Med Genet B Neuropsychiatr Genet. 2004;  129B 97-103
  • 24 Wigg KG, Couto JM, Feng Y. et al Support for EKN1 as the susceptibility locus for dyslexia on 15q21.  Mol Psychiatry. 2004;  9 1111-1121
  • 25 Scerri TS, Fisher SE, Francks C. et al Putative functional alleles of DYX1C1 are not associated with dyslexia susceptibility in a large sample of sibling pairs from the UK.  J Med Genet. 2004;  41 853-857
  • 26 Loo SK, Fisher SE, Francks C. et al Genome-wide scan of reading ability in affected sibling pairs with attention-deficit/hyperactivity disorder: unique and shared genetic effects.  Mol Psychiatry. 2004;  9 485-493
  • 27 Bates TC, Luciano M, Castles A. et al Replication of reported linkages for dyslexia and spelling and suggestive evidence for novel regions on chromosomes 4 and 17.  Eur J Hum Genet. 2007;  15 194-203
  • 28 Schumacher J, König IR, Schröder T. et al Further evidence for a susceptibility locus contributing to reading disability on chromosome 15q15–q21.  Psychiatr Genet. 2008;  18 137-142
  • 29 Dahdouh F, Anthoni H, Tapia-Páez I. et al Further evidence for DYX1C1 as a susceptibility factor for dyslexia.  Psychiatr Genet. 2009;  19 59-63
  • 30 Paracchini S, Ang QW, Stanley FJ. et al Analysis of dyslexia candidate genes in the Raine cohort representing the general Australian population.  Genes Brain Behav. 2011;  10 158-165
  • 31 Cardon LR, Smith SD, Fulker DW. et al Quantitative trait locus for reading disability on chromosome 6.  Science. 1994;  266 276-279
  • 32 Gayán J, Smith SD, Cherny SS. et al Quantitative-trait locus for specific language and reading deficits on chromosome 6p.  Am J Hum Genet. 1999;  64 157-164
  • 33 Fisher SE, Marlow AJ, Lamb J. et al A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia.  Am J Hum Genet. 1999;  64 146-156
  • 34 Fisher SE, Francks C, Marlow AJ. et al Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia.  Nat Genet. 2002;  30 86-91
  • 35 Willcutt EG, Pennington BF, Smith SD. et al Quantitative trait locus for reading disability on chromosome 6p is pleiotropic for attention-deficit/hyperactivity disorder.  Am J Med Genet. 2002;  114 260-268
  • 36 Kaplan DE, Gayan J, Ahn J. et al Evidence for linkage and association with reading disability on 6p21.3–22.  Am J Hum Genet. 2002;  70 1287-1298
  • 37 Grigorenko EL, Wood FB, Golovyan L. et al Continuing the search for dyslexia genes on 6p.  Am J Med Genet B Neuropsychiatr Genet. 2003;  118B 89-98
  • 38 Turic D, Robinson L, Duke M. et al Linkage disequilibrium mapping provides further evidence of a gene for reading disability on chromosome 6p21.3–22.  Mol Psychiatry. 2003;  8 176-185
  • 39 Deffenbacher KE, Kenyon JB, Hoover DM. et al Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: linkage and association analyses.  Hum Genet. 2004;  115 128-138
  • 40 Francks C, Paracchini S, Smith SD. et al A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States.  Am J Hum Genet. 2004;  75 1046-1058
  • 41 Meng H, Smith SD, Hager K. et al DCDC2 is associated with reading disability and modulates neuronal development in the brain.  Proc Natl Acad Sci USA. 2005;  102 17053-17058
  • 42 Cope N, Harold D, Hill G. et al Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia.  Am J Hum Genet. 2005;  76 581-591
  • 43 Schumacher J, Anthoni H, Dahdouh F. et al Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia.  Am J Hum Genet. 2006;  78 52-62
  • 44 Harold D, Paracchini S, Scerri T. et al Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia.  Mol Psychiatry. 2006;  11 1085-1091
  • 45 Fagerheim T, Raeymaekers P, Tonnessen FE. et al A new gene (DYX3) for Dyslexia is located on chromosome 2.  J Med Genet. 1999;  36 664-669
  • 46 Petryshen TL, Kaplan BJ, Hughes ML. et al Supportive evidence for the DYX3 dyslexia susceptibility gene in Canadian families.  J Med Genet. 2002;  39 125-126
  • 47 Francks C, Fisher SE, Olson RK. et al Fine mapping of the chromosome 2p12-16 dyslexia susceptibility locus: quantitative association analysis and positional candidate genes SEMA4F and OTX1.  Psychiatr Genet. 2002;  12 35-41
  • 48 Kaminen N, Hannula-Jouppi K, Kestilä M. et al A genome scan for developmental dyslexia confirms linkage to chromosome 2p11 and suggests a new locus on 7q32.  J Med Genet. 2003;  40 340-345
  • 49 Peyrard-Janvid M, Anthoni H, Onkamo P. et al Fine mapping of the 2p11 dyslexia locus and exclusion of TACR1 as a candidate gene.  Hum Genet. 2004;  114 510-516
  • 50 Igo Jr RP, Chapman NH, Berninger VW. et al Genomewide scan for real-word reading subphenotypes of dyslexia: novel chromosome 13 locus and genetic complexity.  Am J Med Genet B Neuropsychiatr Genet. 2006;  141B 15-27
  • 51 Petryshen TL, Kaplan BJ, Fu Liu M. et al Evidence for a susceptibility locus on chromosome 6q influencing phonological coding dyslexia.  Am J Med Genet. 2001;  105 507-517
  • 52 Nopola-Hemmi J, Myllyluoma B, Haltia T. et al A dominant gene for developmental dyslexia on chromosome 3.  J Med Genet. 2001;  38 658-664
  • 53 Stein CM, Schick JH, Gerry Taylor H. et al Pleiotropic effects of a chromosome 3 locus on speech-sound disorder and reading.  Am J Hum Genet. 2004;  74 283-297
  • 54 Hannula-Jouppi K, Kaminen-Ahola N, Taipale M. et al The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia.  PLoS Genet. 2005;  1 e50
  • 55 Scerri TS, Paracchini S, Morris A. et al Identification of candidate genes for dyslexia susceptibility on chromosome 18.  PLoS One. 2010;  5 e13712
  • 56 Hsiung GY, Kaplan BJ, Petryshen TL. et al A dyslexia susceptibility locus (DYX7) linked to dopamine D4 receptor (DRD4) region on chromosome 11p15.5.  Am J Med Genet B Neuropsychiatr Genet. 2004;  125B 112-119
  • 57 Rabin M, Wen XL, Hepburn M. et al Suggestive linkage of developmental dyslexia to chromosome 1p34-p36.  Lancet. 1993;  342 178
  • 58 Grigorenko EL, Wood FB, Meyer MS. et al Linkage Studies Suggest a Possible Locus for Developmenmtal Dyslexia on Chromosome 1p.  Am J Med Genet (Neur Gen). 2001;  105 120-129
  • 59 Tzenova J, Kaplan BJ, Petryshen TL. et al Confirmation of a dyslexia susceptibility locus on chromosome 1p34-p36 in a set of 100 Canadian families.  Am J Med Genet B Neuropsychiatr Genet. 2004;  127B 117-124
  • 60 de Kovel CG, Hol FA, Heister JG. et al Genomewide scan identifies susceptibility locus for dyslexia on Xq27 in an extended Dutch family.  J Med Genet. 2004;  41 652-657
  • 61 Froster U, Schulte-Körne G, Hebebrand J. et al Cosegregation of balanced translocation (1;2) with retarded speech development and dyslexia.  Lancet. 1993;  342 178-179
  • 62 Raskind WH, Igo RP, Chapman NH. et al A genome scan in multigenerational families with dyslexia: Identification of a novel locus on chromosome 2q that contributes to phonological decoding efficiency.  Mol Psychiatry. 2005;  10 699-711
  • 63 Kuss A W, Puettmann L, Garshasbi M. et al Investigation of a four-generation pedigree with dyslexia reveals a novel locus on chr4 and points to an involvement of a brain expressed gene in the aetiology of this disability.  Medgen. 2011;  23 137-138
  • 64 Pagnamenta AT, Bacchelli E, de Jonge MV. et al International Molecular Genetic Study Of Autism Consortium. Characterization of a family with rare deletions in CNTNAP5 and DOCK4 suggests novel risk loci for autism and dyslexia.  Biol Psychiatry. 2010;  68 320-328
  • 65 Poelmans G, Engelen JJ, Van Lent-Albrechts J. et al Identification of novel dyslexia candidate genes through the analysis of a chromosomal deletion.  Am J Med Genet B Neuropsychiatr Genet. 2009;  150B 140-147

Korrespondenzadresse

Prof. Dr. med. T. Grimm

Abteilung für Medizinische

Genetik im Institut für

Humangenetik der Universität

Würzburg

Biozentrum, Am Hubland

97074 Würzburg

Email: tgrimm@biozentrum.uni-wuerzburg.de

>