Rofo 2012; 184(5): 420-426
DOI: 10.1055/s-0031-1281981
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Magnetic Particle Imaging (MPI)

Magnetic Particle Imaging (MPI)
J. Haegele
1   Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Schleswig-Holstein
,
T. Sattel
2   Institut für Medizintechnik, Universität zu Lübeck
,
M. Erbe
2   Institut für Medizintechnik, Universität zu Lübeck
,
K. Luedtke-Buzug
2   Institut für Medizintechnik, Universität zu Lübeck
,
M. Taupitz
3   Institut für Radiologie, Charit+é – Universitätsmedizin Berlin
,
J. Borgert
4   Tomographic Imaging Group, Research Laboratories, Philips Technologie GmbH Innovative Technologies
,
T. M. Buzug
2   Institut für Medizintechnik, Universität zu Lübeck
,
J. Barkhausen
1   Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Schleswig-Holstein
,
F. M. Vogt
1   Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Schleswig-Holstein
› Author Affiliations
Further Information

Publication History

22 September 2011

07 November 2011

Publication Date:
23 December 2011 (online)

Zusammenfassung

Magnetic Particle Imaging (MPI) bildet mittels Magnetfeldern die Verteilung und Konzentration von superparamagnetischen Eisenoxid Nanopartikeln (SPIO) ab. Es ist ein quantitatives, tomografisches Verfahren ohne ionisierende Strahlung mit gleichzeitig hoher zeitlicher und räumlicher Auflösung sowie hoher Sensitivität. Diese Eigenschaften machen MPI für die medizinische Bildgebung höchst interessant. In diesem Beitrag werden das physikalische Prinzip, die technischen Grundlagen und verschiedene Ansätze zur Realisierung geschildert. Auch werden Möglichkeiten der klinischen Anwendung im Bereich der kardiovaskulären Bildgebung und Intervention sowie der Bildgebung und Therapie von Malignomen inklusive molekularer Bildgebung vorgestellt.

Abstract

Magnetic particle imaging (MPI) displays the spatial distribution and concentration of superparamagnetic iron oxides (SPIOs). It is a quantitative, tomographic imaging method with high temporal and spatial resolution and allows work with high sensitivity yet without ionizing radiation. Thus, it may be a very promising tool for medical imaging. In this review, we describe the physical and technical basics and various concepts for clinical scanners. Furthermore, clinical applications such as cardiovascular imaging, interventional procedures, imaging and therapy of malignancies as well as molecular imaging are presented.

 
  • Literatur

  • 1 Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005; 435: 1214-1217
  • 2 Goodwill PW, Tamrazian A, Croft LR et al. Ferrohydrodynamic relaxometry for magnetic particle imaging. Applied Physics Letters 2011; 98
  • 3 Weizenecker J, Gleich B, Rahmer J et al. Three-dimensional real-time in vivo magnetic particle imaging. Physics in Medicine and Biology 2009; 54: L1-L10
  • 4 Knopp T, Biederer S, Sattel T et al. Trajectory analysis for magnetic particle imaging. Physics in Medicine and Biology 2009; 54: 385-397
  • 5 Weizenecker J et al. Magnetic particle imaging using a field free line. Journal of Physics D Applied Physics 2008; 41: 105009
  • 6 Erbe M, Knopp T, Biederer S et al. Experimentelle Validierung des Konzeptes einer feldfreie Linie für Magnetic-Particle-Imaging anhand von Magnetfeldmessungen. In: et al. Handels H, Ehrhardt J, Deserno TM, (Hrsg) Bildverarbeitung für die Medizin 2011. Berlin Heidelberg: Springer; 2011: 334-338
  • 7 Chikazumi S, Charap S. Physics of Magnetism. New York: Wiley; 1964
  • 8 Néel L. Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann Geophys 1949; 5: 99-136
  • 9 Brown WF. Thermal fluctuations of a single-domain particle. Phys Rev 1963; 130: 1677-1686
  • 10 Weizenecker J, Borgert J, Gleich B. A simulation study on the resolution and sensitivity of magnetic particle imaging. Physics in Medicine and Biology 2007; 52: 6363-6374
  • 11 Rahmer J, Weizenecker J, Gleich B et al. Signal encoding in magnetic particle imaging: properties of the system function. BMC Med Imaging 2009; 9: 4
  • 12 Knopp T, Sattel TF, Biederer S et al. Model-based reconstruction for magnetic particle imaging. IEEE Trans Med Imaging 2010; 29: 12-18
  • 13 Goodwill PW, Conolly SM. The X-Space Formulation of the Magnetic Particle Imaging Process: 1-D Signal, Resolution, Bandwidth, SNR, SAR, and Magnetostimulation. IEEE Trans Med Imaging 2010; 29: 1851-1859
  • 14 Goodwill P, Conolly S. Multi-Dimensional X-Space Magnetic Particle Imaging. IEEE Trans Med Imaging 2011;
  • 15 Ferguson RM, Minard KR, Khandhar AP et al. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Medical Physics 2011; 38: 1619-1626
  • 16 Bohnert J, Dossel O. Effects of time varying currents and magnetic fields in the frequency range of 1 kHz to 1 MHz to the human body – a simulation study. Conf Proc IEEE Eng Med Biol Soc 2010; 2010: 6805-6808
  • 17 Gleich B, Weizenecker J, Borgert J. Experimental results on fast 2D-encoded magnetic particle imaging. Physics in Medicine and Biology 2008; 53: N81-N84
  • 18 Schmale I, Rahmer J, Gleich B et al. First phantom and in vivo MPI images with an extended field of view. In: Weaver JB, Molthen RC, (eds) 1 ed. Lake Buena Vista, Florida, USA: SPIE; 2011: 796510-796516
  • 19 Sattel T, Knopp T, Biederer S et al. Single-Sided Device for Magnetic Particle Imaging. Journal of Physics D Applied Physics 2009; 42: 1-5
  • 20 Sattel TF, Biederer S, Knopp T et al. Hand-Held Concept of a Magnetic Particle Imaging Device. Suppl Mol Imaging Biol 2009;
  • 21 Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews 2008; 60: 1252-1265
  • 22 Garnett MC, Kallinteri P. Nanomedicines and nanotoxicology: some physiological principles. Occupational Medicine 2006; 56: 307-311
  • 23 Wang YX, Hussain S, Krestin G. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. European Radiology 2001; 11: 2319-2331
  • 24 Taupitz M, Schmitz S, Hamm B. Superparamagnetische Eisenoxidpartikel: Aktueller Stand und zukünftige Entwicklungen. Fortschr Röntgenstr 2003; 175: 752, 765
  • 25 Sigovan M, Bessaad A, Alsaid H et al. Assessment of age modulated vascular inflammation in ApoE-/- mice by USPIO-enhanced magnetic resonance imaging. Investigative radiology 2010; 45: 702-707
  • 26 Metz S, Beer A, Settles M et al. Characterization of carotid artery plaques with USPIO-enhanced MRI: assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability. The International Journal of Cardiovascular Imaging (formerly Cardiac Imaging) 2010; 6: 1-12
  • 27 Markov DE et al. Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Physics in Medicine and Biology 2010; 55: 6461
  • 28 Barreto JA, O’Malley W, Kubeil M et al. Nanomaterials: Applications in Cancer Imaging and Therapy. Adv Mater 2011; 23: H18-H40
  • 29 Iyer AK, Khaled G, Fang J et al. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006; 11: 812-818
  • 30 Chen FH et al. The grafting and release behavior of doxorubincin from Fe 3 O 4 @ SiO 2 core‚Äìshell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug delivery. Nanotechnology 2008; 19: 165103
  • 31 Higgins LJ, Pomper MG. The evolution of imaging in cancer: current state and future challenges. Semin Oncol 2011; 38: 3-15
  • 32 Bulte JW, Gleich B, Weizenecker J et al. Developing Cellular MPI: Initial Experience. Proceedings of the International Society for Magnetic Resonance in Medicine 2008; 16: 1675
  • 33 Rauwerdink AM et al. Nanoparticle temperature estimation in combined ac and dc magnetic fields. Physics in Medicine and Biology 2009; 54: L51
  • 34 Rauwerdink AM, Weaver JB. Viscous effects on nanoparticle magnetization harmonics. J Magn Magn Mater 2010; 322: 609-613
  • 35 Ruhland B, Baumann K, Knopp T et al. Magnetic Particle Imaging durch Superparamagnetische Nanopartikel zur Sentinellymphknotendetektion beim Mammakarzinom. Geburtshilfe Und Frauenheilkunde 2009;
  • 36 Ferguson RM, Minard KR, Krishnan KM. Optimization of nanoparticle core size for magnetic particle imaging. J Magn Magn Mater 2009; 321: 1548-1551
  • 37 Goodwill PW, Tamrazian A, Croft LR et al. Ferrohydrodynamic relaxometry for magnetic particle imaging. Applied Physics Letters 2011; 98: 262502-262503
  • 38 Eberbeck D, Wiekhorst F, Wagner S et al. How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Appl Phys Lett 2011; 98
  • 39 Biederer S, Knopp T, Sattel TF et al. Magnetization Response Spectroscopy of Superparamagnetic Nanoparticles for Magnetic Particle Imaging. Journal of Physics D Applied Physics 2009; 42: 7ff
  • 40 Biederer S, Sattel T, Knopp T et al. A spectrometer to measure the usability of nanoparticles for Magnetic Particle Imaging. In: et al. Buzug TM, Borgert J, Knopp T, (Hrsg) Magnetic Nanoparticles. Singapore: World Scientific; 2010: 60-65
  • 41 Weaver JB, Rauwerdink AM, Sullivan CR et al. Frequency distribution of the nanoparticle magnetization in the presence of a static as well as a harmonic magnetic field. Medical Physics 2008; 35: 1988-1994
  • 42 Snyder S, Heinen U. Characterization of Magnetic Nanoparticles for Therapy and Diagnostics. Bruker BioSpin; 2010
  • 43 Goodwill PW, Scott GC, Stang PP et al. Narrowband Magnetic Particle Imaging. IEEE Trans Med Imag 2009; 8: 1231-1237