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Introduction

Fluorination is a very useful strategy in the design and
synthesis of bioactive compounds, since the special nature
of fluorine can confer enhanced binding interactions, met-
abolic stability and desirable physical properties to a mol-
ecule. In fact, approximately 5–15% of the total number
of drugs launched in the past 50 years were fluorinated
compounds and this percentage has noticeably increased
in the past five years.1 Recently, a novel deoxofluorinat-
ing agent, 4-tert-butyl-2,6-dimethylphenylsulfur trifluo-
ride (named Fluolead™, 1) has been reported.2,3

Fluolead™ is a versatile reagent with relative high ther-
mal and hydrolytic stability that fluorinates a broad range
of substrates, generally more efficiently and selectively
than currently available deoxofluorinating agents, such as
diethylaminosulfur trifluoride (DAST), Deoxo-Fluor™
and other related reagents.2,3,6,14 In addition, it can be ob-

tained from commercial sources or be easily prepared in
two steps from commercial available 5-tert-butyl-m-xy-
lene (Scheme 1).2,5 Because it is versatile, efficient, shelf-
stable, easy-to-handle, and relative highly safe, Fluo-
lead™ is expected to be widely used in both academic and
industrial areas.2

Scheme 1
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(A) It has been reported that Fluolead™ reacts with alkyl and aryl
ketones, aldehydes and keto esters producing the corresponding
difluoro products in high yields.2,6 Umemoto and co-workers2 found
that the deoxofluorination of cyclohexanone with Fluolead™ in the
presence of HF-pyridine gives a 99:1 mixture of difluorinated prod-
uct and monofluorinated olefin in 81% yield, being highly selective
in comparison with DAST and Deoxo-Fluor™, which gives 2.6:1
and 1.5:1 mixtures in 79% and 94% yield.4a Fluolead™ efficiently
fluorinates diketones and non-enolizable ketones under very mild
conditions, while fluorination of such substrates with SF4, DAST
and Deoxo-Fluor™ requires severe conditions or give products in
low yields.4b,c

(B) Xu and co-workers developed a method to generate Fluolead™
in situ for the deoxofluorination of aldehydes and ketones.5 This
method gives the gem-difluorinated products in good yields while
problems associated with preparation and use of Fluolead™ are min-
imized and scrupulously dry reagents are not required.
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(C) It has been reported that Fluolead™ can react with carboxylic
acids to give directly the corresponding trifluorinated product in
good yield,6 a reaction that was only carried out with MoF6

7a or
SF4,

7b an extremely toxic gas.

(D) A highly stereoselective deoxofluorination of D-glucopyranose
with Fluolead™ giving 96:4 mixtures of α- and β-fluoro products
was reported.2 When the replacement is carried out with DAST8a or
Deoxo-Fluor™,8b 11:89 and 28:72 mixtures of α- and β-isomers are
obtained.

(E) Stereoselective deoxofluorination of enantiopure alcohols is dif-
ficult to achieve, particularly if the alcohol is prone to SN1 reactions
as in the case of benzylic alcohols. It has been reported that reaction
of benzylic alcohol with Fluolead™ occurs with high stereochemi-
cal inversion and lead to the fluorinated product with 92% ee.9

(F) 4-Fluoropyrrolidine derivatives are useful intermediates in the
synthesis of bioactive compounds, such as dipeptidyl peptidase IV
inhibitors.10a The conventional method for preparing these deriva-
tives from N-protected 4-hydroxyproline requires at least four
steps.10 Recently, Singh an co-workers described a new methodolo-
gy in two steps, using (2S,4S)-4-fluoropyrrolidine-2-carbonyl fluo-
rides as synthons, which can be synthesized in high yields by
stereospecific double fluorination of optically active N-protected
(2S,4R)-4-hydroxyproline with Fluolead™.11 In addition, some 4-
fluoropyrrolidines may also be prepared in a one-pot procedure by
reaction of N-protected 4-hydroxyproline with Fluolead™, followed
by reaction with an appropriate nucleophile.

(G) In an attempt to synthesize (2S)-2-(fluoromethyl)-N-tosylpyrro-
lidine from (2S)-N-tosylprolinol using Fluolead™, Hugenberg and
co-workers reported the formation of a 95:5 mixture of the rear-
ranged fluoro piperidine product and the expected fluoro pyrrolidine
in 95% yield.12 The reaction with Fluolead™ was found to be much
more selective and efficient than most reactions described in the lit-
erature using DAST13a and Deoxo-Fluor™.13
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