Synlett 2012; 23(13): 1937-1940
DOI: 10.1055/s-0031-1290403
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis, Antibacterial Activity and Cytotoxicity of Novel Janus Peptide Dendrimers

Junzhu Pan
a   Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China, Fax: +86(28)85502609   Email: rosaguoli2000@yahoo.com.cn
,
Li Guo*
a   Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China, Fax: +86(28)85502609   Email: rosaguoli2000@yahoo.com.cn
,
Liang Ouyang
b   State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. of China
,
Dongqin Yin
c   Laboratory of Stem Cell Biology, West China Hospital West China Medical School, Sichuan University, Chengdu 610041, P. R. of China
,
Yi Zhao
a   Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China, Fax: +86(28)85502609   Email: rosaguoli2000@yahoo.com.cn
› Author Affiliations
Further Information

Publication History

Received: 13 April 2012

Accepted after revision: 06 May 2012

Publication Date:
16 July 2012 (online)


Abstract

In an attempt to find new antibacterial agents, a series of well-defined Janus peptide dendrimers, which feature multiple anionic groups and amphiphilic structure, were synthesized and characterized in detail. The antibacterial activities of all the synthesized dendrimers were tested and screened by using the two-fold serial dilution method. Several compounds showed activity against E. coli, S. aureus, methicillin-resistant S. aureus, and E. faecalis. Further cytotoxicity assays showed that the antibacterial dendrimers were nontoxic against HEK293.

Supporting Information

 
  • References and Notes

    • 1a Cheng YY, Zhao LB, Li YW, Xu TW. Chem. Soc. Rev. 2011; 40: 2673
    • 1b Menjoge AR, Kannan RM, Tomalia DA. Drug Discovery Today 2010; 15: 171
  • 2 Dutta T, Jain NK, McMillan NA. J, Parekh HS. Nanomed. Nanotechnol. Biol. Med. 2010; 6: 25

    • For reviews, see:
    • 3a Chen CZ. S, Cooper SL. Adv. Mater. (Weinheim, Ger.) 2000; 12: 843
    • 3b Boas U, Heegaard PM. H. Chem. Soc. Rev. 2004; 33: 43
    • 3c McCarthy TD, Karellas P, Henderson SA, Giannis M, O’Keefe DF, Heery G, Paull JR. A, Matthews BR, Holan G. Mol. Pharmaceutics 2005; 2: 312
    • 3d Mintzer MA, Dane EL, O’Toole GA, Grinstaff MW. Mol. Pharmaceutics 2012; 9: 342
    • 3e Castonguay A, Ladd E, van de Ven TG. M, Kakkar A. New J. Chem. 2012; 36: 199
    • 4a Kolomiets E, Swiderska MA, Kadam RU, Johansson EM. V, Jaeger KE, Darbre T, Reymond JL. ChemMedChem 2009; 4: 562
    • 4b Johansson EM. V, Crusz SA, Kolomiets E, Buts L, Kadam RU, Cacciarini M, Bartels K.-M, Diggle SP, Camara M, Williams P, Loris R, Nativi D, Rosenau F, Jaeger K.-E, Darbre T, Reymond JL. Chem. Biol. 2008; 15: 1249
    • 4c Johansson EM. V, Kadam RU, Rispoli G, Crusz SA, Bartels K.-M, Diggle SP, Camara M, Williams P, Jaeger K.-E, Darbre T, Reymond JL. Med. Chem. Commun. 2011; 2: 418
  • 5 Rajakumar P, Ganesan K, Jayavelu S, Murugesan K. Synlett 2005; 1121
    • 6a Calabretta MK, Kumar A, McDermott AM, Cai CZ. Biomacromolecules 2007; 8: 1807
    • 6b Lopez AI, Reins RY, McDermott AM, Trautner BW, Cai CZ. Mol. Biosyst. 2005; 5: 1148
    • 6c Wang L, Erasquin UJ, Zhao MR, Ren L, Zhang MY, Cheng GJ, Wang YJ, Cai CZ. ACS Appl. Mater. Interfaces 2011; 3: 2885
    • 7a Chen CZ. S, Cooper SL. Biomaterials 2002; 23: 3359
    • 7b Chen CZ. S, Beck-Tan NC, Dhurjati P, van Dyk TK, LaRossa RA, Cooper SL. Biomacromolecules 2000; 1: 473
  • 8 Ortega P, Copa-Patino JL, Munoz-Fernandez MA, Soliveri J, Gomez R, de la Mata FJ. Org. Biomol. Chem. 2008; 6: 3264
    • 9a Tam JP, Lu YA, Yang JL. Eur. J. Biochem. 2002; 269: 923
    • 9b Bruschi M, Pirri G, Giuliani A, Nicoletto SF, Baster I, Scorciapino MA, Casu M, Rinaldi AC. Peptides 2010; 31: 1459
    • 9c Hou SY, Zhou CH, Liu ZG, Young AW, Shi ZH, Ren DC, Kallenbach NR. Bioorg. Med. Chem. Lett. 2009; 19: 5478
    • 9d Janiszewska J, Urbanczyk-Lipkowska Z. J. Mol. Microbiol. Biotechnol. 2007; 13: 220
    • 9e Polcyn P, Jurczak M, Rajnisz A, Solecka J, Urbanczyk-Lipkowska Z. Molecules 2009; 14: 3881
  • 10 Jain K, Kesharwani P, Gupta U, Jain NK. Int. J. Pharm. 2010; 394: 122
  • 11 For a review on Janus dendrimers, see: Caminade AM, Laurent R, Delavaux-Nicot B, Majoral JP. New J. Chem. 2012; 36: 217
  • 12 Percec V, Wilson DA, Leowanawat P, Wilson CJ, Hughes AD, Kaucher MS, Hammer DA, Levine DH, Kim AJ, Bates FS, Davis KP, Lodge TP, Klein ML, DeVane RH, Aqad E, Rosen BM, Argintaru AO, Sienkowska MJ, Rissanen K, Nummelin S, Ropponen J. Science 2010; 328: 1009
    • 13a Tuuttila T, Lahtinen M, Kuuloja N, Huuskonen J, Rissanen K. Thermochim. Acta 2010; 497: 101
    • 13b Tuuttila T, Lahtinen M, Kuuloja N, Huuskonen J, Rissanen K. Thermochim. Acta 2010; 497: 109
  • 14 Gillies ER, Frechet JM. J. J. Am. Chem. Soc. 2002; 124: 14137
    • 15a Luman NR, Grinstaff MW. Org. Lett. 2005; 7: 4863
    • 15b Meyers SR, Juhn FS, Griset AP, Luman NR, Grinstaff MW. J. Am. Chem. Soc. 2008; 130: 14444
  • 16 Tulu M, Aghatabay NM, Senel M, Dizman C, Parali T, Dulger B. Eur. J. Med. Chem. 2009; 44: 1093
  • 17 Pan JZ, Wen M, Yin DQ, Jiang B, He DS, Guo L. Tetrahedron 2012; 68: 2943
  • 18 Crespo L, Sanclimens G, Pons M, Giralt E, Royo M, Albericio F. Chem. Rev. 2005; 105: 1663
  • 19 Synthesis of Janus Dendrimers; Typical Procedure for 2a: Compound 7 (313 mg, 0.5 mmol) dissolved in anhyd THF (25 mL) was cooled to –15 °C, and NMM (10 mmol) and IBCF (10 mmol) were added. After stirring for 10 min, 4a (900 mg, 0.5 mmol) dissolved in anhyd THF (10 mL) was added dropwise. The reaction mixture was vigorously stirred at r.t. for 24 h, then the solution was concentrated under vacuum, and the residue was taken up in EtOAc (30 mL) and washed with 1 M HCl (10 mL), 1 M NaHCO3 (10 mL), and brine (10 mL). The organic layer was dried over anhyd Na2SO4. After concentration, the residue was purified by silica gel column chromatography (CH2Cl2–MeOH) to obtain a white waxy solid. Pd/C (10%, 100 mg) was added to a solution of the obtained white waxy solid in MeOH–CH2Cl2 (30 mL, 3:1 v/v). The reaction mixture was stirred under a hydrogen atmosphere for 24 h, filtered through a membrane filter, and concentrated under reduced pressure to afford 2a (539 mg, 64%) as a white foam. 1H NMR (400 MHz, DMSO-d 6): δ = 0.83–0.87 (t, J = 6.4 Hz, 6 H, 2 × CH3), 1.23 (br s, 40 H, myristic acid 20 × CH2), 1.48–1.49 (m, 4 H, myristic acid-β-CH 2 × 2), 2.24–2.35 (m, 8 H, myristic acid-α-CH 2 × 2 + Asp-β-CH 2/2 × 4), 2.38–2.59 (m, 16 H, succinic acid CH 2 × 2 + NCH2CH 2CONH × 6), 2.63–2.70 (m, 4 H, Asp-β-CH 2/2 × 4), 3.41–3.60 (m, 16 H, NCH 2CH2O × 3 + NCH 2CH2CONH × 3), 3.99 (br s, 6 H, Gly-CH 2 × 3), 4.05–4.18 (m, 4 H, NCH2CH 2O × 2), 4.48–4.54 (m, 4 H, Asp-α-CH × 4), 7.89 (br s, 1 H, CONH), 7.96 (br s, 1 H, CONH), 8.10 (br s, 1 H, CONH), 8.25 (br s, 1 H, CONH), 8.27 (br s, 1 H, CONH), 8.39 (br s, 1 H, CONH), 8.41 (br s, 1 H, CONH), 12.64 (br s, 8 H, Asp-COOH × 8). MS (ESI): m/z [M + Na + H]+ calcd for C76H123N11O31: 1685.84; found: 1709.5. Anal. Calcd for C76H123N11O31: C, 54.11; H, 7.35; N, 9.13; O, 29.40. Found: C, 54.03; H, 7.26; N, 9.01; O, 29.31. Detailed characterization data of 1a, 1b, and 2b are provided in the Supporting Information (see S1 for details)
  • 20 Methods for antibacterial and toxicity experiments are given in the Supporting Information (see S2 for details)
  • 21 Denyer SP. Int. Biodeterior. Biodegrad. 1995; 36: 227