Synthesis of PF-3635659

Significance: Chronic obstructive pulmonary disease (COPD) is projected to become the third leading cause of death worldwide by 2020. PF-3635659 is a once-daily, inhaled muscarinic M$_3$ antagonist that has entered phase II clinical trials for the treatment of COPD. The synthesis delivered 2.6 kg of the hydrochloride salt and benefited from crystalline intermediates at every stage.

Comment: A noteworthy feature of the synthesis is the reaction of amide F with MeMgBr in the presence of ZrCl$_4$ (a variant of the classical Bouveault reaction) to give the sterically encumbered gem-dimethyl amine G in 74% yield on an 8.2 mol scale. Late-stage demethylation of the phenol methyl ether G using methionine in methanesulfonic acid avoided the genetic toxicity problems of the more commonly used boron tribromide.

Synthesis of PF-3635659

$$
\begin{align*}
A & \xrightarrow{\text{K$_2$CO$_3$ (1.2 equiv), EICN, 80 °C, 18 h}} B (1.2 \text{ equiv}) \\
B & \xrightarrow{\text{H$_2$ (4 bar), 20% Pd(OH)$_2$/C}} C \\
C & \xrightarrow{\text{then add oxalic acid (0.5 equiv)}} D
\end{align*}
$$

$$
\begin{align*}
E & \xrightarrow{\text{ZrCl$_4$ (2.3 equiv), MeMgBr (9.0 equiv), THF, –5 °C, 4 h}} G \\
G & \xrightarrow{\text{DL-methionine (3.0 equiv), MeOH, 30 °C, 72 h}} F
\end{align*}
$$

$$
\begin{align*}
F & \xrightarrow{\text{KOH (18.5 equiv), t-AmOH, 99 °C, 24 h, then HCl (1.05 equiv)}} H \\
H & \xrightarrow{\text{MTBE, r.t., 19 h recrystallize from MEK–H$_2$O}} \text{PF-3635659 Hydrochloride}
\end{align*}
$$