Synlett 2012; 23(14): 2116-2120
DOI: 10.1055/s-0032-1316684
letter
© Georg Thieme Verlag Stuttgart · New York

Iodine-Catalyzed Highly Efficient Synthesis of 3-Alkylated/3-Alkenylated Indoles from 1,3-Dicarbonyl Compounds

Neetu Singh
Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India, Fax: +91(542)2368127   Email: knsinghbhu@yahoo.co.in
,
Krishna Nand Singh*
Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India, Fax: +91(542)2368127   Email: knsinghbhu@yahoo.co.in
› Author Affiliations
Further Information

Publication History

Received: 26 May 2012

Accepted after revision: 10 June 2012

Publication Date:
03 August 2012 (online)


Abstract

Molecular iodine has been found to be an efficient and inexpensive catalyst for the synthesis of 3-alkylated/3-alkenylated indoles in excellent yields by using different indoles and 1,3-dicarbonyl compounds at room temperature.

 
  • References and Notes

    • 1a Sundberg RJ. The Chemistry of Indoles . Academic Press; New York: 1996. 113
    • 1b Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1c Li S.-M. Nat. Prod. Rep. 2010; 27: 57
    • 1d Lewis SE. Tetrahedron 2006; 62: 8655
    • 2a Rani P, SrivastavaV K, Kumar A. Eur. J. Med. Chem. 2004; 449
    • 2b Gribble GW. In Comprehensive Heterocyclic Chemistry . 2nd ed., Vol. 2 Pergamon Press; New York: 1996: 211
    • 2c Andreani A, Burnelli S, Granaiola M, Leoni A, Locatelli A, Morigi R, Rambaldi M, Varoli L, Landi L, Prata C, Berridge MV, Grasso C, Fiebig H.-H, Kelter G, Burger AM, Kunkel MW. J. Med. Chem. 2008; 51: 4563
    • 2d Lounasmaa M, Tolvanen A. Nat. Prod. Rep. 2000; 17: 175
    • 2e Hibino S, Chozi T. Nat. Prod. Rep. 2001; 18: 66
    • 2f Faulkner DJ. Nat. Prod. Rep. 2002; 19: 1
    • 3a Cacchi S, Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 3b Bartoli G, Bencivennia G, Dalpozzob R. Chem. Soc. Rev. 2010; 39: 4449
    • 4a Reddy AV, Ravinder K, Niranjan Reddy VL, Gound TV, Ravikanth V, Venkateswarlu Y. Synth. Commun. 2003; 33: 3687
    • 4b Chen D, Yu L, Wang PG. Tetrahedron Lett. 1996; 37: 4467
    • 4c Sharma GV. M, Reddy JJ, Lakshmi PS, Krishna PR. Tetrahedron Lett. 2004; 45: 7729
    • 4d Kumar AV, Rao KR. Tetrahedron Lett. 2011; 52: 5188
    • 4e Bandini M, Cozzi PG, Giacomini M, Melchiorre P, Selva S, Umani-Ronchi A. J. Org. Chem. 2002; 67: 3700
    • 4f Bartoli G, Bartolacci M, Bosco M, Foglia G, Giuliani A, Marcantoni E, Sambri L, Torregiani E. J. Org. Chem. 2003; 68: 4594
    • 4g Rajabi F, Razavia S, Luque R. Green Chem. 2010; 12: 786
    • 4h Hou X, Hemit H, Yong J, Nie L, Aisa HA. Synth. Commun. 2010; 40: 973
    • 4i Ekbote SS, Panda AG, Malhari D, Bhor MD, Bhanage BM. Catal. Commun. 2009; 10: 1569
    • 4j King HD, Meng Z, Denhart D, Mattson R, Kimura R, Wu D, Gao Q, Macor JE. Org. Lett. 2005; 7: 3437
    • 5a Arcadi A, Alfonsi M, Bianchi G, D’Anniballe G, Marinelli F. Adv. Synth. Catal. 2006; 348: 331
    • 6a Santra S, Majee A, Hajra A. Tetrahedron Lett. 2011; 52: 3825
    • 6b Rad-Moghadam K, Sharifi-Kiasaraie M. Tetrahedron 2009; 65: 8816
  • 7 Yadav JS, Reddy BV. S, Praneeth K. Tetrahedron Lett. 2008; 49: 199
    • 8a Kumar KP, Satyanarayana S, Reddy PL, Narasimhulu G, Ravirala N, Reddy BV. S. Tetrahedron Lett. 2012; 53: 1738
    • 8b Gao S, Tzeng T, Sastry MN. V, Chu C, Liu J, Lin C, Yao C. Tetrahedron Lett. 2006; 47: 1889
    • 8c Varala R, Nuvula S, Adapa SR. J. Org. Chem. 2006; 71: 8283
    • 8d More SV, Sastry MN. V, Wang CC, Yao CF. Tetrahedron Lett. 2005; 46: 6345
    • 8e Li X, Mao Z, Wang Y, Chen W, Lin X. Tetrahedron 2011; 67: 3858
    • 8f Reddy BV. S, Grewal H. Tetrahedron Lett. 2011; 52: 761
    • 8g Kavala V, Lin C, Kuo C.-W, Fang H, Yao C.-F. Tetrahedron 2012; 68: 1321
    • 8h Datta B, Madhusudana Reddy MB, Pasha MA. Synth. Commun. 2011; 41: 2331
    • 8i Verma AK, Aggarwal T, Rustagia V, Larock RC. Chem. Commun. 2010; 46: 4064
    • 8j Lamar AA, Nicholas KM. J. Org. Chem. 2010; 75: 7644
    • 8k Togo H, Iida S. Synlett 2006; 2159
    • 9a Raghuvanshi DS, Singh KN. Synlett 2011; 373
    • 9b Singh N, Singh SK, Khanna RS, Singh KN. Tetrahedron Lett. 2011; 52: 2419
    • 9c Raghuvanshi DS, Singh KN. Tetrahedron Lett. 2011; 52: 5702
    • 9d Kumari K, Raghuvanshi DS, Jouikov V, Singh KN. Tetrahedron Lett. 2012; 53: 1130
    • 9e Allam BK, Singh KN. Tetrahedron Lett. 2011; 52: 5851 General Experimental Procedure for the 3-Alkenylation/3-Alkylation of Indoles (Table 2) A mixture of indole (1 mmol), 1,3-dicarbonyl compound (1 mmol) and I2 (10 mol%) was taken in a round-bottom flask and stirred at r.t. for the appropriate time (Table 2). After the completion of reaction as indicated by TLC, a sat. aq solution of Na2S2O3 (2 × 5 mL) was added, and the mixture was extracted with EtOAc (3 × 5 mL). The combined organic phases were dried over anhyd Na2SO4, filtered, and evaporated under reduced pressure to furnish the crude product which was purified by column chromatography. Spectral Data of some Representative Products (E)-Ethyl-3-(2-methyl-1H-3-indolyl)-2-butenoate (3b) IR (KBr): 3411, 2933, 1718 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.99 (br s, 1 H), 7.65 (d, 1 H, J = 7.5 Hz), 7.29–7.25 (m, 1 H), 7.17–7.09 (m, 2 H), 5.92 (s, 1 H), 4.25 (q, 2 H, J = 7.2 Hz), 2.66 (s, 3 H), 2.51 (s, 3 H), 1.35 (t, 3 H, J = 7.2 Hz). 13C NMR (75 MHz, CDCl3): δ = 167.3, 152.0, 135.0, 132.7, 127.0, 121.7, 120.3, 119.5, 117.1, 116.8, 110.4, 59.5, 20.4, 14.4,13.4. Anal. Calcd for C15H17NO2: C, 74.05; H, 7.04; N, 5.76. Found: C, 73.99; H, 7.06; N, 5.68. Ethyl 3,3-Bis(1H-3-indolyl)butanoate (4b) IR (KBr): 3406, 3351, 3056, 2938, 1724 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.95 (br s, 2 H), 7.35–7.28 (m, 4 H), 7.10–7.03 (m, 4 H), 6.88 (t, 2 H, J = 7.5 Hz), 3.86 (q, 2 H, J = 7.2 Hz), 3.37 (s, 2 H), 2.08 (s, 3 H), 0.86 (t, 3 H, J = 7.2 Hz). Anal. Calcd for C22H22N2O2: C, 76.28; H, 6.40; N, 8.09. Found: C, 76.21; H, 6.25; N, 8.01. 4,4-Bis(5-bromo-1H-3-indolyl)pentan-2-one (4c) IR: 3342, 3321, 2966, 1680 cm–1. 1H NMR (300 MHz, CDCl3): δ = 8.08 (br s, 2 H), 7.37 (m, 2 H), 7.20–7.13 (m, 6 H), 3.42 (s, 2 H), 1.95 (s, 3 H), 1.60 (s, 3 H). Anal. Calcd for C21H18Br2N2O: C, 53.19; H, 3.83; N, 5.91. Found: C, 53.11; H, 3.70; N, 5.84. Ethyl 3,3-Bis(5-bromo-1H-3-indolyl)butanoate (4d) IR (KBr): 3423, 3360, 2976, 1713 cm–1. 1H NMR (300 MHz, CDCl3): δ = 8.06 (br s, 2 H), 7.37 (m, 2 H), 7.20–7.14 (m, 6 H), 3.89 (q, 2 H, J = 7.2 Hz), 3.28 (s, 2 H), 2.02 (s, 3 H), 0.91 (t, 3 H, J = 7.2 Hz). Anal. Calcd for C22H20Br2N2O2: C, 52.41; H, 4.00; N, 5.56. Found: C, 53.33; H, 4.05; N, 5.51. 4,4-Bis(5-methoxy-1H-3-indolyl)pentan-2-one (4e) IR (KBr): 3408, 3360, 2934, 1695 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.90 (br s, 2 H), 7.22–7.07 (m, 4 H), 6.76–6.73 (m, 4 H), 3.61 (s, 6 H), 3.46 (s, 2 H), 1.95 (s, 3 H), 1.57 (s, 3 H). Anal. Calcd for C23H24N2O3: C, 73.38; H, 6.43; N, 7.44. Found: C, 73.22; H, 6.43; N, 7.35. Ethyl 3,3-Bis(5-methoxy-1H-3-indolyl)butanoate (4f) IR (KBr): 3409, 3365, 2978, 1719 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.87(br s, 2 H), 7.19–7.10 (m, 4 H), 6.74–6.71 (m, 4 H), 3.89 (q, 2 H, J = 7.2 Hz), 3.61 (s, 6 H), 3.33 (s, 2 H), 2.04 (s, 3 H), 0.90 (t, 3 H, J = 7.2 Hz). Anal. Calcd for C24H26N2O4: C, 70.92; H, 6.45; N, 6.89. Found: C, 70.83; H, 6.28; N, 6.78