Regioselective Aromatic Nucleophilic Substitution in N-Aryl-2-nitrosoanilines with Oxygen and Nitrogen Nucleophiles

Zbigniew Wróbel,* Karolina Stachowska, Andrzej Kwast

Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44, 01-224 Warsaw, Poland
Fax +48(22)6326681; E-mail: zbigniew.wrobel@icho.edu.pl
Received: 16.10.2012; Accepted after revision: 10.11.2012

Abstract: Aromatic nucleophilic substitution of halogens in N-aryl-2-nitrosoanilines with ammonia, alkyamines and alkoxide ions proceeds efficiently and highly regioselectively in the position para to the nitroso group. When two halogen atoms ortho and para are present, the latter is substituted exclusively. Oxidative substitution of hydrogen at the unsubstituted ortho position of the nitrosoaniline ring does not compete with substitution of para halogen atoms. The reaction allows the synthesis of N-aryl-2-nitrosoanilines which cannot be obtained according to known methods.

Key words: arenes, amines, nucleophilic aromatic substitution, regioselectivity, nitroso group

The main reaction pathway between nucleophilic agents and electron-deficient arenes is addition to the ring in activated positions. If there is a low-nucleofugial group X (Cl, OMe, etc.) in one of such positions, the addition can result in the formation of σ^H- and σ^X-adducts. It has been unambiguously shown that the rate of the former process is faster than formation of σ^X-adducts. Since the addition is associated with dearomatization of the ring, the σ-adducts tend to restore aromativity. Fast departure of X^- from σ^\cdot-adducts results in nucleophilic aromatic substitution (S_NAr).1 Spontaneous departure of H$^-$ from σ^H-adducts does not occur but these adducts can be transformed into products of nucleophilic substitution of hydrogen (S_NH) in several ways.1c,3,4 and under suitable circumstances this process dominates over the conventional S_NAr reaction.5

A few years ago we described nucleophilic substitution of hydrogen in the reaction of nitroarenes with anilines in the presence of a strong base. The reaction, in which σ^H-adducts are converted into substituted nitrosoarenes according to an intramolecular redox stoichiometry, allowed for the synthesis of a wide range of N-aryl-2-nitrosoanilines.5

The reaction is a general and practical method for the preparation of these compounds5–9 which are otherwise difficult to obtain. This simple and one-step synthesis of N-aryl-2-nitrosoanilines is of great value because such compounds are versatile starting materials for the synthesis of a plethora of heterocyclic systems, for example, phenazines,6 benzimidazoles1 and quinoxalinones.8

Although the scope of the nucleophilic substitution of hydrogen in nitroarenes with anilines to form N-aryl-2-nitrosoanilines is rather wide, there are some limitations. The reaction proceeds efficiently with nitroarenes of sufficient electrophilic activity, however, it does not proceed if the nitroarenes contain electron-donating substituents, such as NR$_2$, OR and particularly NHR or OH, that form anions under the reaction conditions. Since N-aryl-2-nitrosoanilines with such electron-donating substituents can be starting materials in the synthesis of valuable heterocycles, it was of interest to expand our methods to these nitrosoanilines. It is well known that the nitroso group is a strong electron-withdrawing substituent, even stronger than the nitro group. Thus, we expected that it would be possible to introduce alkylamino, alkoxy and similar substituents into N-aryl-2-nitrosoanilines, obtained from electron-deficient nitroarenes, via nucleophilic substitution of hydrogen or halogen atoms.

Despite the strong electron-withdrawing effect of the nitroso group, nucleophilic substitution of halogen (S_NAr reaction) or hydrogen (S_NH) in nitrosoarenes has only been sporadically reported.10–12 Indeed, nitrosoarenes are rather unstable, due to their facile dimerization and redox processes, they are not readily available and nucleophiles tend to add to the nitrogen of the nitroso group.13

Since N-aryl-2-nitrosoanilines have two activated positions, the 3- and 5-positions (ortho and para to the nitroso group, respectively), nucleophilic agents can add to the ring at both of them, regardless what substituents are present at these positions. Addition at the position bearing any leaving group would result in replacement of this group with the nucleophile (SN$_2$Ar reaction), while addition to the unsubstituted ring position, which seems to be faster than to any substituted position, may result in oxidative substitution of hydrogen. All these reaction pathways, reported for halonitrosoarenes,10–13 are also likely in the case of N-aryl-2-nitrosoanilines (Scheme 1).

Preliminarily studied reactions of three differently substituted N-aryl-2-nitrosoanilines 1 that contain chlorine in one or both activated positions with nucleophiles, such as methoxide ion and alkyamines, revealed a striking difference in reactivity of the 3- and 5-positions in the substitution of halogen, and a low tendency to substitute hydrogen. In the reaction of 1a ($X = Cl$, $Y = H$, Ar = 4-ClC$_6$H$_4$), only substitution of the 5-chlorine was observed. Substitution of the 3-chlorine in 1b ($X = H$, $Y = Cl$, Ar = 2,6-Me$_2$C$_6$H$_3$) occurred with methoxide ion to give N-(2,6-dimethylphenyl)-3-methoxy-2-nitrosoaniline, whereas the reactions with amines gave mixtures of unidentified products. The reactions of dichloro compound
1c \((X = Y = Cl, \text{Ar} = 4-\text{EtOC}_6\text{H}_4)\) with all examined nucleophiles proceeded selectively with substitution of the 5-chlorine, and no reaction at the nitroso group was observed.

The only serious side process observed was cyclization of \(1a\) and \(1g\) with formation of phenazine derivatives in the reactions carried out in the potassium carbonate/methanol system (Table 1, entries 1 and 16). In a few other reactions of \(1\) carried out under such conditions, this cyclization was also observed, but amounts of the resultant phenazines were rather insignificant.

The cyclization of \(N\)-aryl-2-nitrosoanilines in the presence of potassium carbonate in methanol has been described previously, and is an efficient method for the synthesis of certain phenazine derivatives.6 Interestingly, if 2-nitrosoaniline is N-substituted with a condensed, bicyclic aromatic system (1-naphthalene or 8-quinoline) the cyclization is so fast that possible substitution of 4-chlorine was not observed.6 Detailed studies on the reactivity and selectivity of the cyclization under various conditions are currently in progress.

The results given in Table 1 confirmed the main feature of the reaction which was revealed in the introductory examination, i.e. the high preference for the substitution of the halogen located \(\text{para}\) to the nitroso group, over that located \(\text{ortho}\). When both the 3- and 5-positions were occupied by chlorine atoms, only the latter was replaced (Table 1, entries 4–6, and 14 and 15). This regioselectivity of the substitution in \(1\) is consistent and was observed for all nucleophiles studied (neutral alkylamines and alkoxide ions), hence it is apparently an inherent feature of the \(\text{ortho}\)-aminonitrosobenzene system. It seems to be caused by efficient conjugation of the lone electron pair of the \(\text{ortho}\)-amine nitrogen of the \(N\)-aryl-2-nitrosoanilines with the strong electron-withdrawing nitroso group (Figure 1). In the favored quinoid structure, the 3- and 5-positions are markedly differentiated regarding their electrophilic activity, and addition of a nucleophile occurs preferentially to the 5-position.

![Scheme 1](image)

Scheme 1 Possible ways of nucleophilic addition to \(N\)-aryl-2-nitrosoanilines

The high regioselectivity in the nucleophilic substitution of \(1\) may be advantageous for the synthesis of a variety of substituted 2-nitrosoanilines. In order to examine the potential value of the method, several \(N\)-aryl-2-nitrosoanilines 1a–j, possessing one or two halogen atoms in the 3- and/or 5-position activated by the nitroso group, were subjected to the reaction with ammonia, and primary and secondary amines, as well as alcohols (Table 1). The reactions with alcohols, used also as the solvent, were promoted by potassium carbonate. Amines were used in a fivefold excess and the reactions were carried out in acetonitrile. For introduction of the unsubstituted amino group, a 4 M ethanolic solution of ammonia was used. All the reactions proceeded at ambient temperature, for the time specified in Table 1.

Substitution of 5-fluoro and 5-chloro derivatives with alkoxydines and secondary amines gave products 2 in high yields. Relatively less nucleophilic primary alkylamines reacted slower, much more efficiently with 5-fluoro- than with 5-chloro-\(N\)-aryl-2-nitrosoanilines. On the other hand, more reactive morpholine was able to substitute the 5-methoxy group in 1e, although after long reaction time. Noteworthy, condensation of primary amines with the nitroso group was never observed.

The only serious side process observed was cyclization of 1a and 1g with formation of phenazine derivatives in the

![Figure 1](image)

Figure 1

Similar directing effects caused by the conjugation of electron pairs of heteroatoms with a nitro group in nitroarenes have been observed previously in reactions of carbanions with 2,4-dinitrophenolates,14 2,4-dinitroaniline derivatives15 and N-substituted 2-nitropyroles16 (Figure 2). In all these cases, reorganization of the electronic structure of the substrate, caused by conjugation, led to selective or preferential addition of carbanions of aryl chloromethyl sulfones to the most electrophilic position of the ring.

The known literature data dealing with nucleophilic substitution in nitrosoarenes give rather limited information on the regioselectivity of the reaction. In polyhalogenated
nitrosobenzenes, substitution of both ortho10 and para11 halogens with nucleophiles was observed. Noteworthy, when the halonitrosoarene possesses an activated unsubstituted position, spontaneous oxidative substitution of hydrogen was much faster than the SNAr reaction of halogens.10,12

As indicated by the results in Table 1, substitution of hydrogen at the unoccupied 3-position in 1 was not observed, even when an inactive nucleofugal group such as methoxy was present at the 5-position (Table 1, entry 13).

In conclusion, the presented method allows the synthesis of N-aryl-2-nitrosoanilines which are difficult or impossible to obtain directly by nucleophilic substitution of hydrogen in nitroarenes with anions of anilines.5 It extends the scope of available compounds potentially useful in the synthesis of many important heterocyclic systems. Aromatic nucleophilic substitution of halogens in activated positions of N-aryl-2-nitrosoanilines proceeds efficiently with various neutral and anionic nucleophiles under very mild conditions; moreover, it is highly regioselective. When two halogens ortho and para to the nitroso group

Table 1 Reaction of N-Aryl-2-nitrosoanilines 1 with Nucleophiles

<table>
<thead>
<tr>
<th>Entry</th>
<th>X</th>
<th>Y</th>
<th>R</th>
<th>I</th>
<th>NuH</th>
<th>Conditions</th>
<th>Time(^*) (h)</th>
<th>2</th>
<th>Yield(^b) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cl</td>
<td>H</td>
<td>4-Cl</td>
<td>a</td>
<td>MeOH</td>
<td>K(_2)CO(_3), MeOH, r.t.</td>
<td>2</td>
<td>a</td>
<td>27(^c)</td>
</tr>
<tr>
<td>2</td>
<td>Cl</td>
<td>H</td>
<td>4-Cl</td>
<td>a</td>
<td>pyrrolidine</td>
<td>MeCN, r.t.</td>
<td>2</td>
<td>b</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>Cl</td>
<td>H</td>
<td>4-Cl</td>
<td>a</td>
<td>n-BuNH(_2)</td>
<td>MeCN, r.t.</td>
<td>7 d</td>
<td>c</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>Cl</td>
<td>Cl</td>
<td>4-OEt</td>
<td>c</td>
<td>MeOH</td>
<td>K(_2)CO(_3), MeOH, r.t.</td>
<td>2</td>
<td>d</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>Cl</td>
<td>Cl</td>
<td>4-OEt</td>
<td>c</td>
<td>pyrrolidine</td>
<td>MeCN, r.t.</td>
<td>1</td>
<td>e</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>Cl</td>
<td>Cl</td>
<td>4-OEt</td>
<td>c</td>
<td>n-BuNH(_2)</td>
<td>MeCN, r.t.</td>
<td>44</td>
<td>f</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>H</td>
<td>4-Cl</td>
<td>d</td>
<td>n-BuNH(_2)</td>
<td>MeCN, r.t.</td>
<td>2</td>
<td>c</td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>H</td>
<td>4-Cl</td>
<td>d</td>
<td>morpholine</td>
<td>MeCN, r.t.</td>
<td>1</td>
<td>g</td>
<td>95</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>H</td>
<td>4-Cl</td>
<td>d</td>
<td>BnNH(_2)</td>
<td>Et(_3)N, MeCN, r.t.</td>
<td>7</td>
<td>h</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>H</td>
<td>4-Cl</td>
<td>d</td>
<td>HO(CH(_2))(_2)NH(_2)</td>
<td>MeCN, r.t.</td>
<td>2</td>
<td>i</td>
<td>85</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>H</td>
<td>4-Cl</td>
<td>d</td>
<td>NH(_3)</td>
<td>EtOH, r.t.</td>
<td>24</td>
<td>j</td>
<td>90</td>
</tr>
<tr>
<td>12</td>
<td>Cl</td>
<td>H</td>
<td>4-Cl</td>
<td>a</td>
<td>morpholine</td>
<td>MeCN, r.t.</td>
<td>2</td>
<td>g</td>
<td>81</td>
</tr>
<tr>
<td>13</td>
<td>OMe</td>
<td>H</td>
<td>4-Cl</td>
<td>e</td>
<td>morpholine</td>
<td>MeCN, r.t.</td>
<td>22 d</td>
<td>g</td>
<td>74</td>
</tr>
<tr>
<td>14</td>
<td>Cl</td>
<td>Cl</td>
<td>4-Cl</td>
<td>f</td>
<td>morpholine</td>
<td>MeCN, r.t.</td>
<td>24</td>
<td>k</td>
<td>88</td>
</tr>
<tr>
<td>15</td>
<td>Cl</td>
<td>Cl</td>
<td>4-Cl</td>
<td>f</td>
<td>MeOH</td>
<td>K(_2)CO(_3), MeOH, r.t.</td>
<td>4</td>
<td>l</td>
<td>78</td>
</tr>
<tr>
<td>16</td>
<td>Cl</td>
<td>H</td>
<td>H</td>
<td>g</td>
<td>MeOH</td>
<td>K(_2)CO(_3), MeOH, r.t.</td>
<td>3</td>
<td>m</td>
<td>53(^d)</td>
</tr>
<tr>
<td>17</td>
<td>Cl</td>
<td>OMe</td>
<td>H</td>
<td>h</td>
<td>MeOH</td>
<td>K(_2)CO(_3), MeOH, r.t.</td>
<td>2</td>
<td>n</td>
<td>96</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>H</td>
<td>4-F</td>
<td>i</td>
<td>HO(CH(_2))(_2)OH</td>
<td>K(_2)CO(_3), glycol, r.t.</td>
<td>2</td>
<td>o</td>
<td>86</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>H</td>
<td>4-F</td>
<td>i</td>
<td>CH(_2)=CHCH(_2)NH(_2)</td>
<td>MeCN, r.t.</td>
<td>2</td>
<td>p</td>
<td>76</td>
</tr>
<tr>
<td>20</td>
<td>Cl</td>
<td>OMe</td>
<td>4-OEt</td>
<td>j</td>
<td>pyrrolidine</td>
<td>MeCN, r.t.</td>
<td>3</td>
<td>q</td>
<td>90</td>
</tr>
<tr>
<td>21</td>
<td>Cl</td>
<td>OMe</td>
<td>4-OEt</td>
<td>j</td>
<td>MeOH</td>
<td>K(_2)CO(_3), MeOH, r.t.</td>
<td>7</td>
<td>r</td>
<td>81</td>
</tr>
</tbody>
</table>

\(^a\) Not optimized; \(d\) = days.
\(^b\) Yield of isolated products.
\(^c\) Additionally, 2,6-dichlorophenazine (28\%) was formed.
\(^d\) Additionally, 2-chlorophenazine (22\%) was formed.
are present, the para halogen is substituted exclusively. Oxidative substitution of hydrogen at activated, but unsubstituted, positions of the nitrosoarene ring, common in reactions of polyhalonitrosoarenes, does not compete with substitution of para halogens. As a consequence, the reaction is clean and high-yielding.

Melting points are uncorrected. 1H and 13C NMR spectra were recorded on a Varian VNMRS 500 instrument (500 MHz for 1H and 125 MHz for 13C spectra) at 298 K (except for 2h which were obtained at 353 K). Chemical shifts (δ) are expressed in ppm referred to TMS; coupling constants are in hertz. Mass spectra (EI, 70 eV) were obtained on an AMD-604 spectrometer. Silica gel (60, 230–400 mesh) was used for column chromatography. MeCN was dried over CaH2, distilled and stored over molecular sieves. THF (230–400 mesh) was used for column chromatography. MeCN was used for column chromatography. MeCN was dried over CaH2, distilled and stored over molecular sieves. THF (230–400 mesh) was used for column chromatography. MeCN was dried over CaH2, distilled and stored over molecular sieves. THF (230–400 mesh) was used for column chromatography. MeCN was dried over CaH2, distilled and stored over molecular sieves.

V-Aryl-2-nitrosoanilines 1b and 1i; General Procedure

To a cooled solution of t-BuOK (695 mg, 6.2 mmol) in anhyd THF (10 mL) was added dropwise at –70 to –78 °C a solution of the aniline (1.77 mmol) in THF (2 mL), then the nitroarene (1.77 mmol) in THF (2 mL). The mixture was stirred at that temperature for 30 min, then poured into NaHCl (100 mL) and extracted with EtOAc (3 × 50 mL). The combined extracts were washed with H2O (100 mL) and brine (70 mL), then dried with Na2SO4, and the solvent was evaporated. The crude product was purified by silica gel column chromatography (hexane–EtOAc, 1:1). Known N-aryl-2-nitrosoanilines 1 were obtained following procedures published previously.†

V-Aryl-2-nitrosoanilines 2a and 2j; General Procedure

A V-aryl-2-nitrosoaniline (0.5 mmol) was dissolved in MeCN (10 mL) and the appropriate amine (2.5 mmol) was added, except for benzylamine (64 mg, 0.6 mmol) added along with Et3N (121 mg, 1.2 mmol). The mixture was stirred at r.t. for the time specified in Table 1. After the reaction was complete, the mixture was poured into H2O (50 mL) and extracted with EtOAc (3 × 50 mL). The combined extracts were washed with H2O (100 mL) and brine (50 mL), then dried with Na2SO4, and the solvent was evaporated. The crude product was purified by silica gel column chromatography (hexane–EtOAc, 1:1; unless otherwise specified) to obtain pure 2j.

V-Aryl-2-nitrosoanilines 2a and 2j; General Procedure

A V-aryl-2-nitrosoaniline 1 with Amines; General Procedure

A V-aryl-2-nitrosoaniline 1 (0.5 mmol) was dissolved in MeCN (10 mL) and the appropriate amine (2.5 mmol) was added, except for benzylamine (64 mg, 0.6 mmol) added along with Et3N (121 mg, 1.2 mmol). The mixture was stirred at r.t. for the time specified in Table 1. After the reaction was complete, the mixture was poured into H2O (50 mL) and extracted with EtOAc (3 × 50 mL). The combined extracts were washed with H2O (100 mL) and brine (50 mL), then dried with Na2SO4, and the solvent was evaporated. The crude product was purified by silica gel column chromatography (hexane–EtOAc, 1:1; unless otherwise specified) to obtain pure 2j.

N-(4-Chlorophenyl)-5-fluoro-2-nitrosoaniline 2b

Chromatography eluent: MeCN–EtOAc, 1:1; yield: 133 mg (90%).

N-(4-Chlorophenyl)-5-fluoro-2-nitrosoaniline 2b

Chromatography eluent: MeCN–EtOAc, 1:1; yield: 133 mg (90%).

N-(4-Chlorophenyl)-5-fluoro-2-nitrosoaniline 2b

Chromatography eluent: MeCN–EtOAc, 1:1; yield: 133 mg (90%).

N-(4-Chlorophenyl)-5-fluoro-2-nitrosoaniline 2b

Chromatography eluent: MeCN–EtOAc, 1:1; yield: 133 mg (90%).

N-(4-Chlorophenyl)-5-fluoro-2-nitrosoaniline 2b

Chromatography eluent: MeCN–EtOAc, 1:1; yield: 133 mg (90%).
N-Butyl-N'-chloro-N-(4-ethoxyphenyl)-4-nitrosobenzene-1,3-diamine (2f)

Dark solid; yield: 151 mg (74%); mp 175–177 °C.

1H NMR (500 MHz, CDCl3): δ = 0.92 (t, J = 7.3 Hz, 3 H), 1.32–1.41 (m, 2 H), 1.43 (t, J = 7.0 Hz, 3 H), 1.53–1.61 (m, 2 H), 3.05–3.12 (m, 2 H), 3.40–3.66 (m, 4 H), 4.04 (q, J = 7.0 Hz, 2 H), 5.10 (br s, 1 H), 5.67 (d, J = 2.2 Hz, 1 H), 6.39–6.42 (m, 1 H), 6.89–6.93 (m, 2 H), 7.12–7.16 (m, 2 H), 13.72 (s, 1 H).

13C NMR (125 MHz, CDCl3): δ = 13.7, 14.8, 20.0, 30.9, 42.9, 63.7, 87.0, 109.5, 115.3, 126.7, 129.6, 142.6, 145.3, 147.9, 150.7, 157.4.

MS (EI, 70 eV): m/z (%) = 347 (59), 333 (100), 302 (45), 290 (68). HRMS (EI): m/z calcd for C18H16N3O3Cl: 347.1401; found: 347.1403.

N-(4-Chlorophenyl)-5-(morpholin-4-yl)-2-nitrosoaniline (2g)

Dark solid; yield: 151 mg (95%); mp 191–192 °C.

1H NMR (500 MHz, CDCl3): δ = 3.39–3.42 (m, 4 H), 3.78–3.82 (m, 4 H), 6.11 (d, J = 2.2 Hz, 1 H), 6.59 (dd, J = 9.4, 2.2 Hz, 1 H), 7.18–7.22 (m, 2 H), 7.34–7.38 (m, 2 H), 8.33 (d, J = 9.4 Hz, 1 H), 12.90 (s, 1 H).

13C NMR (125 MHz, CDCl3): δ = 46.7, 66.1, 89.8, 107.6, 126.4, 129.9, 131.8, 135.8, 139.4, 146.9, 148.2, 155.7.

MS (EI, 70 eV): m/z (%) = 351 (100), 334 (37), 320 (27), 262 (46). HRMS (EI): m/z calcd for C24H18N3O4Cl: 351.0541; found: 351.0536.

3-Chloro-N-(4-chlorophenyl)-5-(morpholin-4-yl)-2-nitrosoaniline (2l)

Brown solid; yield: 115 mg (78%); mp 131–132 °C.

1H NMR (500 MHz, CDCl3): δ = 3.78 (s, 3 H), 6.20 (d, J = 2.5 Hz, 1 H), 6.71 (d, J = 2.5 Hz, 1 H), 7.17–7.21 (m, 2 H), 7.39–7.42 (m, 2 H), 13.40 (br s, 1 H).

13C NMR (125 MHz, CDCl3): δ = 56.2, 93.0, 110.5, 126.6, 130.0, 132.5, 135.1, 138.3, 146.9, 149.7, 167.1.

© Georg Thieme Verlag Stuttgart · New York

Synthesis 2013, 45, 127–133
MS (EI, 70 eV); m/z (%) = 296 (73), 279 (100), 265 (30), 231 (24).
HRMS (EI); m/z caleed for C$_{11}$H$_{9}$N$_{2}$O$_{3}$Cl$_{2}$: 296.0119; found: 296.0120.

5-Methoxy-2-nitro-N-phenylaniline (2m)

Green solid; yield: 60 mg (53%); mp 66–68 °C.

1H NMR (500 MHz, CDCl$_3$): δ = 3.79 (s, 3 H), 6.41 (br s, 1 H), 6.57–6.62 (m, 1 H), 7.26–7.29 (m, 3 H), 7.40–7.44 (m, 2 H), 8.56 (d, J = 8.7 Hz, 1 H), 12.93 (s, 1 H).

13C NMR (125 MHz, CDCl$_3$): δ = 55.9, 93.7, 109.5, 124.8, 126.5, 129.7, 136.9, 137.4, 142.6, 153.6, 167.2.

MS (EI, 70 eV); m/z (%) = 228 (26), 211 (100).

HRMS (EI); m/z caleed for C$_{11}$H$_{9}$N$_{2}$O$_{3}$: 228.0899; found: 228.0889.

3,5-Dimethoxy-2-nitro-N-phenylaniline (2n)

Dark solid; yield: 65 mg (96%); mp 126–128 °C.

1H NMR (500 MHz, CDCl$_3$): δ = 3.80 (s, 3 H), 4.01 (s, 3 H), 6.02 (d, J = 2.3 Hz, 1 H), 6.12 (d, J = 2.3 Hz, 1 H), 7.27–7.30 (m, 1 H), 7.36–7.39 (m, 2 H), 7.43–7.48 (m, 2 H), 12.61 (br s, 1 H).

13C NMR (125 MHz, CDCl$_3$): δ = 56.1, 56.5, 88.1, 90.2, 124.6, 126.2, 129.7, 137.6, 137.2, 146.8, 146.3, 164.9.

MS (EI, 70 eV); m/z (%) = 258 (100), 241 (73), 227 (41), 198 (23).

HRMS (EI); m/z caleed for C$_{14}$H$_{14}$N$_{2}$O$_{3}$: 258.0904; found: 258.0915.

5-Methoxy-2-nitro-N-[2,6-Dimethylphenyl]-3-methoxy-2-nitrosoaniline (3)

Dark solid; yield: 84.5 mg (66%); mp 144–146 °C.

1H NMR (500 MHz, CDCl$_3$): δ = 2.19 (s, 3 H), 3.73 (s, 3 H), 4.05 (s, 3 H), 5.83 (AB, J = 2.1 Hz, 2 H), 6.90–6.94 (m, 2 H), 7.13–7.17 (m, 2 H), 13.97 (s, 1 H).

13C NMR (125 MHz, CDCl$_3$): δ = 152.2, 155.4, 160.5 (d, J$_{C-F}$ = 247.1 Hz).

HRMS (EI): m/z caleed for C$_{15}$H$_{16}$N$_{2}$O$_{2}$: 256.1212; found: 256.1213.

N-(4-Ethoxyphenyl)-3,5-dimethoxy-2-nitrosoaniline (2r)

Brown solid; yield: 122 mg (81%); mp 165–167 °C.

1H NMR (500 MHz, CDCl$_3$): δ = 1.43 (t, J = 7.0 Hz, 3 H), 3.73 (s, 3 H), 4.05 (q, J = 7.0 Hz, 2 H), 4.05 (s, 3 H), 5.83 (AB, J = 2.4 Hz, 2 H), 6.90–6.94 (m, 2 H), 7.13–7.17 (m, 2 H), 13.97 (s, 1 H).

13C NMR (125 MHz, CDCl$_3$): δ = 148.5, 55.6, 56.3, 63.7, 85.8, 89.8, 115.3, 126.7, 129.3, 140.4, 147.0, 157.6, 164.3, 169.5.

MS (EI, 70 eV); m/z (%) = 302 (100), 285 (61), 257 (80), 242 (50).

HRMS (EI); m/z caleed for C$_{14}$H$_{13}$N$_{2}$O$_{3}$: 302.1267; found: 302.1262.

Acknowledgment

The authors are deeply grateful to Professor M. Małgosza for fruitful discussion, encouragement and valued assistance during preparation of the manuscript.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

References

(17) Due to low solubility of 21 in other deuterated solvents, the spectra were recorded in DMSO-d₆. While a complex mixture of isomeric forms was observed in this solvent at room temperature, acceptable spectra could be obtained at 80 °C, although two ¹³C signals were not visible.