Synthesis 2012; 44(24): 3699-3721
DOI: 10.1055/s-0032-1317489
review
© Georg Thieme Verlag Stuttgart · New York

Strategies for Spiroketal Synthesis Based on Transition-Metal Catalysis

Jean A. Palmes
University of Florida, Department of Chemistry, P.O. Box 117200, Gainesville, FL 32611-117200, USA   Fax: +1(352)8460296   Email: aponick@chem.ufl.edu
,
Aaron Aponick*
University of Florida, Department of Chemistry, P.O. Box 117200, Gainesville, FL 32611-117200, USA   Fax: +1(352)8460296   Email: aponick@chem.ufl.edu
› Author Affiliations
Further Information

Publication History

Received: 08 September 2012

Accepted after revision: 27 September 2012

Publication Date:
07 November 2012 (online)


Abstract

The transition-metal-catalyzed synthesis of spiroketals is a rapidly growing area and these methods have facilitated the use of new spiroketal synthons as latent spiroketal equivalents. This review highlights the different substrate classes and provides select examples of applications in natural product synthesis.

1 Introduction

2 Conformational Aspects of Spiroketal Structures

3 Traditional Approaches to Spiroketal Synthesis

4 Transition-Metal-Catalyzed Spiroketalization

4.1 Dihydroalkoxylation of Alkynediols

4.2 Spiroketalization of Monopropargylic Triols

4.3 Intramolecular Reaction of Epoxy Alkynes

4.4 Spiroketalization of Propargyl Vinyl Ethers

4.5 Oxycarbonylation of Dienones

4.6 Transposition of Allylic Alcohols

4.7 Hetero-Diels–Alder Reaction

4.8 Cyclization of Monoacetylated Ketodiol

4.9 Ring-Rearrangement and Ring-Closing Metathesis

4.10 [2+2+2] Cycloaddition of C-Alkynyl Carbohydrates

4.11 Pauson–Khand Reaction of Ketal Enynes

4.12 Tandem Cyclization and Cross-Coupling Reactions of β-Bromoketals and Aryl Iodides

4.13 Applications to Natural Product Synthesis

5 Outlook

 
  • References

    • 1a Kluge AF. Heterocycles 1986; 24: 1699
    • 1b Boivin TL. B. Tetrahedron 1987; 43: 3309
    • 1c Perron F, Albizati KF. Chem. Rev. 1989; 89: 1617
    • 1d Jacobs MF, Kitching WB. Curr. Org. Chem. 1998; 2: 395
    • 1e Mead KT, Brewer BN. Curr. Org. Chem. 2003; 7: 227
    • 1f Aho JE, Pihko PM, Rissa TK. Chem. Rev. 2005; 105: 4406
    • 1g Ley SV, Milroy L.-G, Myers RM. Product Class 9: Spiroketals. In Science of Synthesis . Vol. 29; Warriner S. Georg Thieme; Stuttgart: 2007: 613
  • 2 Cheng XC, Kihara T, Kusakabe H, Magae J, Kobayashi Y, Fang RP, Ni ZF, Shen YC, Ko K, Yamaguchi I. J. Antibiot. 1987; 40: 907
  • 3 Tachibana K, Scheuer PJ, Tsukitani Y, Kikuchi H, Van Engen D, Clardy J, Gopichand Y, Schmitz FJ. J. Am. Chem. Soc. 1981; 103: 2469
    • 4a Pettit GR, Cichacz ZA, Gao F, Herald CL, Boyd MR, Schmidt JM, Hooper JN. A. J. Org. Chem. 1993; 58: 1302
    • 4b Bai R, Cichacz ZA, Herald CL, Pettit GR, Hamel E. Mol. Pharmacol. 1993; 44: 757
  • 5 Yeung K.-S, Paterson I. Chem. Rev. 2005; 105: 4237
    • 6a Weismann KJ. Nature Chem. Bio. 2011; 409
    • 6b Favre S, Vogel P, Gerber-Lemaire S. Molecules 2008; 13: 2570

      For extensive reviews on stereoelectronic effects, see:
    • 7a Kirby AJ. The anomeric effect and related stereoelectronic effects at oxygen. Springer-Verlag; New York: 1983
    • 7b Deslongchamps P. Stereoelectronic effects in organic chemistry . Pergamon Press; Oxford 1983:
    • 7c Thatcher GR. J. The Anomeric Effect and Associated Stereoelectronic Effects, ACS Symposium Series 539. American Chemical Society; Washington (DC): 1985
    • 7d Juaristi E, Cuevas G. The Anomeric Effect . CRC Press; Boca Raton (FL): 1995
    • 8a Deslongchamps P, Rowan DD, Pothier N, Sauve T, Saunders JK. Can. J. Chem. 1981; 59: 1105
    • 8b Descotes G, Lissac M, Delmau J, Duplau J. C. R. Acad. Sci. Ser. C 1968; 267: 1240
    • 9a Deslongchamps P, Pothier N. Can. J. Chem. 1987; 68: 597
    • 9b Pothier N, Goldstein S, Deslongchamps P. Helv. Chim. Acta 1992; 75: 604
  • 10 Utimoto K. Pure Appl. Chem. 1983; 55: 1845
  • 11 Liu B, De Brabander JK. Org. Lett. 2006; 8: 4907
  • 12 Messerle BA. J. Organomet. Chem. 2000; 607: 97
    • 13a Messerle BA, Vuong KQ. Pure Appl. Chem. 2006; 78: 385
    • 13b Messerle BA, Vuong KQ. Organometallics 2007; 26: 3031
    • 13c Ho JH. H, Hodgson R, Wagler J, Messerle BA. Dalton Trans. 2010; 39: 4062
    • 13d Selvaratnam S, Ho JH. H, Huleatt PB, Messerle B, Chai CL. L. Tetrahedron Lett. 2009; 50: 1125
    • 14a Ravindar K, Reddy MS, Lindqvist L, Pelletier J, Deslongchamps P. Org. Lett. 2010; 12: 4420
    • 14b Ravindar K, Reddy MS, Lindqvist L, Pelletier J, Deslongchamps P. J. Org. Chem. 2011; 76: 1269
  • 15 Ravindar K, Sridhar ReddyM, Deslongchamps P. Org. Lett. 2011; 13: 3178
  • 16 Aponick A, Li CY, Palmes JA. Org. Lett. 2009; 11: 121
  • 17 Dai L.-Z, Qi M.-J, Shi Y.-L, Liu X.-G, Shi M. Org. Lett. 2007; 9: 3191
  • 18 Dai L.-Z, Shi M. Chem.–Eur. J. 2008; 14: 7011
  • 19 Sherry BD, Maus L, Laforteza BN, Toste FD. J. Am. Chem. Soc. 2006; 128: 8132
  • 20 Yadav JS, Sreenivasa Rao E, Sreenivasa Rao V, Choudary BM. Tetrahedron Lett. 1990; 31: 2491
  • 21 Jung HH, Seiders JR, Floreancig PE. Angew. Chem. Int. Ed. 2007; 46: 8464
  • 22 Xie Y, Floreancig PE. Chem. Sci. 2011; 2: 2423
  • 23 Rizzacasa MA, Pollex A. Org. Biomol. Chem. 2009; 7: 1053
    • 24a Pale P, Chuche J. Tetrahedron Lett. 1988; 29: 2947
    • 24b Pale P, Bouquant J, Chuche J, Carrupt PA, Vogel P. Tetrahedron 1994; 50: 8035
    • 24c Pale P, Chuche J. Tetrahedron Lett. 1987; 28: 6447
  • 25 Audrain H, Thorhauge J, Hazell RG, Jørgensen KA. J. Org. Chem. 2000; 65: 4487
  • 26 El Sous M, Ganame D, Tregloan PA, Rizzacasa MA. Org. Lett. 2004; 6: 3001
    • 27a Cuzzupe AN, Hutton CA, Lilly MJ, Mann RK, Rizzacasa MA, Zammit SC. Org. Lett. 2000; 2: 191
    • 27b McRae KJ, Rizzacasa MA. J. Org. Chem. 1997; 62: 1196
    • 27c Cuzzupe AN, Hutton CA, Lilly MJ, Mann RK, McRae KJ, Zammit SC, Rizzacasa MA. J. Org. Chem. 2001; 66: 2382
  • 28 Guérinot A, Serra-Muns A, Gnamm C, Bensoussan C, Reymond S, Cossy J. Org. Lett. 2010; 12: 1808
  • 29 van Hooft PA. V, Leeuwenburgh MA, Overkleeft HA, van der Marel GA, van Boeckel CA. A, van Boom JH. Tetrahedron Lett. 1998; 39: 6061
  • 30 Trost BM, Edstrom ED. Angew. Chem., Int. Ed. Engl. 1990; 29: 520
  • 31 van Hooft PA. V, El Oualid F, Overkleeft HS, van der Marel G A, van Boom J H, Leeuwenburgh M A. Org. Biomol. Chem. 2004; 2: 1395
  • 32 Bassindale MJ, Hamley P, Leitner A, Harrity JP. A. Tetrahedron Lett. 1999; 40: 3247
    • 33a Ghosh SK, Ko C, Liu J, Wang J, Hsung RP. Tetrahedron 2006; 62: 10485
    • 33b Liu J, Hsung RP. Org. Lett. 2005; 7: 2373
  • 34 Ghosh SK, Hsung RP, Wang J. Tetrahedron Lett. 2004; 45: 5505
  • 35 Lejkowski M, Banerjee P, Runsink J, Gais H.-J. Org. Lett. 2008; 10: 2713
  • 36 Leeuwenburgh MA, Appeldoorn CC. M, van Hooft PA. V, Overkleeft HA, van der Marel GA, van Boom JH. Eur. J. Org. Chem. 2000; 837
  • 37 Subrahmanyam AV, Palanichamy K, Kaliappan KP. Chem.–Eur. J. 2010; 16: 8545
  • 38 Mandel J, Dubois N, Neuburger M, Blanchard N. Chem. Commun. 2011; 47: 10284
  • 39 McDonald FE, Zhu HY. H, Holmquist CR. J. Am. Chem. Soc. 1995; 117: 6605
    • 40a Yamamoto Y, Hashimoto T, Hattori K, Kikuchi M, Nishiyama H. Org. Lett. 2006; 8: 3565
    • 40b Yamamoto Y, Yamashita K, Hotta T, Hashimoto T, Kikuchi M, Nishiyama H. Chem.–Asian J. 2007; 2: 1388
  • 41 Ghosh SK, Hsung RP, Liu J. J. Am. Chem. Soc. 2005; 127: 8260
  • 42 Yan C.-S, Peng Y, Xu X.-B, Wang Y.-W. Chem.–Eur. J. 2012; 18: 6039
    • 43a Trost BM, Horne DB, Woltering MJ. Chem.–Eur. J. 2006; 12: 6607
    • 43b Trost BM, Horne DB, Woltering MJ. Angew. Chem. Int. Ed. 2003; 42: 5987
  • 44 Trost BM, Weiss AH. Angew. Chem. Int. Ed. 2007; 46: 7664
  • 45 Ramana CV, Suryawanshi SB, Gonnade RG. J. Org. Chem. 2009; 74: 2842
    • 46a Trost BM, O’Boyle BM. J. Am. Chem. Soc. 2008; 130: 16190
    • 46b Trost BM, O’Boyle BM, Hund D. J. Am. Chem. Soc. 2009; 131: 15061
  • 47 Benson S, Collin M.-P, Arlt A, Gabor B, Goddard R, Fürstner A. Angew. Chem. Int. Ed. 2011; 50: 8739
  • 48 Fang C, Pang Y, Forsyth CJ. Org. Lett. 2010; 12: 4528
  • 49 Awasaguchi K.-i, Miyazawa M, Uoya I, Inoue K, Nakamura K, Yokoyama H, Kakuda H, Hirai Y. Synlett 2010; 2392
  • 50 Commandeur M, Commandeur C, Cossy J. Org. Lett. 2011; 13: 6018
  • 51 Figueroa R, Hsung RP, Guevarra CC. Org. Lett. 2007; 9: 4857
  • 52 Vongvilai P, Isaka M, Kittakoop P, Prasert Srikitikulchai P, Kongsaeree P, Thebtaranonth Y. J. Nat. Prod. 2004; 67: 457
    • 53a Isaka M, Suyarnsestakorn C, Tanticharoen M, Kongsaeree P, Thebtaranonth Y. J. Org. Chem. 2002; 67: 1561
    • 53b Tanaka H, Nishida K, Sugita K, Yoshioka T. Jpn. J. Cancer Res. 1999; 90: 1139