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Abstract: The synthesis of new 5H-pyridobenzazepine and 5H-di-
pyridoazepine compounds using as key step a palladium-catalyzed
amination–cyclization reaction is reported. By choosing an appro-
priate combination of ligands and reactants under standardized re-
action conditions, N- and S-tricyclic products can be prepared in
one step from the appropriate stilbenes.
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The tricyclic 5H-dibenz[b,f]azepine (iminostilbene) core
1 is a pharmaceutically important subunit in tricyclic ther-
apeutic agents such as carbamazepine (2) and opipramol
(3, Figure 1). Carbamazepine (2), a member of tricyclic
antidepressant (TCA), was approved by the FDA in 1968
for treatment of complex partial, tonic-clonic, and mixed-
type seizures.1 Opipramol (3) is primarily used for the
treatment of generalized anxiety disorders.2 Most TCA act
as reuptake inhibitors of norepinephrine, serotonin, and
dopamine, but opipramol acts as a high-affinity σ-receptor
agonist with modest subclass selectivity.3

Figure 1  Tricyclic therapeutic agents structurally related to 5H-
dibenz[b,f]azepine (1)

There are several classical efficient synthetic routes avail-
able for the synthesis of the iminostilbene moiety:4 dehy-
drogenation of 10,11-dihydrodibenz[b,f]azepines,5

dehydrobromination of 10-bromo-10,11-dihydrodi-
benz[b,f]azepines,4 Wagner–Meerwein rearrangement of
9-hydroxymethyl-9,10-dihydroacridine derivatives,6 de-
hydration of 10,11-dihydro-10-hydroxydibenz[b,f]aze-

pines,4 and acid-catalyzed rearrangement of 1-aryl-
indoles.7 In addition, a highly efficient Pd/ligand-con-
trolled selective synthesis of 5H-dibenz[b,f]azepines in
high yield using a two-step reaction sequence has been re-
ported.8 Thus, using a variety of phosphines, DavePhos
was established as the most effective among the ligands
investigated for the synthesis of 1.

Recently, a very interesting approach to the synthesis of
5H-dibenz[b,f]azepines was developed. It comprised the
reaction of three components, ortho-substituted aryl
iodides, o-bromoanilines, and norbornadiene in a palladi-
um-catalyzed reaction, followed by retro-Diels–Alder re-
action of the norbornadiene intermediate to afford the
corresponding iminostilbene products in good yields.9

The palladium-catalyzed double N-arylation reaction has
been widely used for the construction of different hetero-
cyclic skeletons: carbazoles,10 thienopyrroles,11 indoles,12

and phenazines.13 On the other hand, very few examples
of double palladium-catalyzed amination reactions for the
formation of azepine ring system are known.14,15 The syn-
thesis of symmetric and unsymmetric analogues of antide-
pressant imipramine was investigated in the presence of
Pd(OAc)2/Xphos15a or PdII–XPhos precatalyst15b which
were recently developed by Buchwald and co-workers.16

The yields of synthesized 3,7-disubstituted imipramines
were moderate to good.

Herein, we report on the synthesis of new 5H-pyridoben-
zazepine and 5H-dipyridoazepine compounds using as the
key step a palladium-catalyzed amination–cyclization re-
action. We reasoned that co-operative ortho effects17

could be exploited to obtain stilbenes (Z)-8 and (Z)-9 with
good selectivity. To that end, the alcohol 418 was trans-
formed into its corresponding bromo derivative, which
was used for the preparation of phosphonium salt 5. On
the other hand, phosphonium salt 7 was prepared using a
similar reaction sequence starting from commercially
available 2-bromobenzaldehyde (Scheme 1). The Wittig
reaction of phosphonium salts with freshly prepared 4-
chloropyridine-3-carbaldehyde afforded the desired ex-
pected ethylene derivatives 8 and 9. The unstable 4-chlo-
ropyridine-3-carbaldehyde was always prepared
immediately before its use. After subsequent chromato-
graphic separation Z isomer 8 was obtained in 54% yield,
and corresponding E isomer in 12% yield.17 Structural
characterization of two separated isomers was achieved
by 1H NMR spectroscopy (see Supporting Information).
Stilbenes (Z,E)-9 were obtained in lower yields, but better
stereoselectivity of two geometric isomers [(Z)-9 and (E)-
9, 24:1] were observed (see Supporting Information). The
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geometry of compound 9 could not be established by
NMR spectroscopy (C2 symmetric), however, its Z geom-
etry is proposed based on the high yield of the correspond-
ing product 14 in the Pd-catalyzed double amination
(87%, see Table 2). In the next step we carried out the pal-
ladium-catalyzed double amination reaction of 8 (Table
1). 

It has been described19 that the appropriate ligand selec-
tion is the key for successful amination, and furthermore,
it was shown that dialkylbiarylphosphines provide espe-
cially active catalysts in this context. In this work, we
screened the ligands using Pd(OAc)2 (5 mol% with re-
spect to 8) as source of palladium and NaOt-Bu (2.8
equiv) as a base, in toluene at 100 °C. Using biaryl phos-
phane ligands, JohnPhos and SPhos (10 mol% with re-
spect to 8), we obtained comparable yields of 10 (Table 1,
entries 1 and 3), but XPhos afforded a significantly lower
yield of 10 (Table 1, entry 4). Unfortunately, the reaction
with dppf was inefficient (Table 1, entry 5). Higher load-
ings of the palladium source (10 mol% vs. 5 mol%) and
ligand (30 mol% vs. 10 mol%) did not appreciably affect
the yield (Table 1, entry 2 vs. entry 1).

After optimizing reaction conditions, the iminostilbene 8
and 9 were subjected to coupling reactions with various
amines. The desired azepines 10–17 were obtained in fair-
ly good yields (Table 2).

Finally, as an expansion of this study, we explored the
synthesis of thiepine derivatives (Table 3). Various meth-
ods have been reported in the literature to obtain thiepine
derivatives,20 but only one involves palladium-catalyzed
reactions.21 In our approach as a source of sulfur for C–S
bond formation we used potassium thioacetate. Interest-
ingly, no conversion was observed when 8 and 9 were
subjected to the same reaction conditions as for the syn-
thesis of the azepine analogues. However, when we re-
placed JohnPhos with dppf22 (ineffective in the amination
reaction above) the desired thiepines were isolated in 28%
and 31% yields, respectively (Table 3). To expand the
scope of the new methodology, and to increase the yields,
we explored microwave-heated double palladium-cata-
lyzed C–S bond formation. After several different reac-
tion parameters were explored, it was found that the
reaction time could be reduced to 90 minutes at 175 °C us-
ing the same Pd/ligand loadings. Additionally, the yields
of the desired compounds obtained using microwave-
accelerated protocol were higher (Table 3).

To conclude, we have developed a simple and efficient
palladium-catalyzed method for the synthesis of azepine
derivatives.23 In addition, to the best of our knowledge, for
the first time this methodology has been applied to thi-
epine-core synthesis.24 Further studies on dibenzostilbene
cyclization, optimization of the reaction conditions, and
evaluation of medicinal importance of these compounds
are under way.

Scheme 1 Synthesis of ethylene derivatives 8 and 9
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Table 1  Palladium-Catalyzed Double Amination Reactions of 8 un-
der Various Conditionsa,b

Entry Pd source (mol%) Ligand (mol%) Yield (%)

1 Pd (OAc)2 (5) L1 (10) 81

2 Pd (OAc)2 (10) L1 (30) 78

3 Pd (OAc)2 (5) L2 (10) 81

4 Pd (OAc)2 (5) L3 (10) 19

5 Pd (OAc)2 (5) L4 (10) 0

a Reaction conditions: Pd(OAc)2, L, amine (3 equiv), NaOt-Bu (2.8 
equiv) in toluene at 100 °C for 48 h under argon atmosphere; isolated 
yields.
b Reactions were monitored by TLC and GC–MS.
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Table 3  Synthesis of Thiepine Derivatives

18 28%a (51%)b 19 31%a (49%)b

a Reaction conditions: Pd(OAc)2 (5 mol%), dppf (10 mol%), potassi-
um thioacetate (1 equiv), NaOt-Bu (1.2 equiv) in toluene at 70 °C for 
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for 90 min (microwave) under argon atmosphere; isolated yields.
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reaction mixture was cooled to r.t., and the products were 
purified by preparative column chromatography.
[1]Benzothiepino[3,2-c]pyridine (18)
Yield 51%; white solid; mp 80–82 °C. 1H NMR (500 MHz, 
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(+): m/z = 212.05209 [M + H]+ (error: –3.58 ppm). 
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