Synthesis of β-Hydroxy O-Alkyl Hydroxylamines from Epoxides Using a Convenient and Versatile Two-Step Procedure

Gaëlle Malik,a Angélique Ferry,a Xavier Guinchard,a David Crich*a,b

a Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
b Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
Fax +1(313)5778822; E-mail: DCrich@chem.wayne.edu
Received: 25.09.2012; Accepted after revision: 06.11.2012

Abstract: A simple and convenient synthetic method was developed to prepare β-hydroxy O-alkyl hydroxylamines in which base-mediated ring opening of epoxides with acetophenone oxime followed by cleavage of the oxime with 2,4-dinitrophenylhydrazine in acidic media furnished the hydroxylamine, which can be protected in situ with various N-protecting groups.

Key words: hydroxylamines, epoxides, ring opening, oxime cleavage, protecting groups

O-Alkyl hydroxylamines (or aminooxy compounds), which are non-basic substitutes for amines, are found in various natural products such as l-canaline and in various synthetic products displaying interesting biological activities. Along with their β-hydroxy congeners, these compounds predominantly show enzyme inhibition activities whereby the aminooxy moiety forms a stable oxime with an aldehyde group present on the cofactor. In preparative chemistry these reactive species usually serve as starting material for the preparation of functionalized O-alkyl oximes by simple condensation with aldehydes or ketones, often with quantitative yields and with almost complete functional group compatibility. This classical reaction has undergone a renaissance as a chemoselective ligation strategy and has emerged as a powerful means for the assembly of bioconjugates.

In connection with ongoing projects in our laboratory, we required a variety of β-hydroxy O-alkyl hydroxylamines and conceived that these might be accessed by the opening of epoxides in N-protected hydroxylamines followed by deprotection of the nitrogen atom (Scheme 1). Toward this end, the most efficient approach leading to seemed to be a direct opening of epoxide by an N-protected hydroxylamine (i.e., N-Fmoc-hydroxylamine or commercially available N-Boc-hydroxylamine). Surprisingly, such protocols are scarcely documented in the literature. In most reports, N-Boc-hydroxylamine is used under basic conditions, which leads to the expected β-hydroxy O-alkyl hydroxylamines in low to modest yields. The successful employment of N-hydroxyphthalimide in this context was also described by Porco and co-workers with promotion by a Co-oligosalen catalyst. In pursuit of our goal, we initially looked for viable conditions on commercially available cyclopentene oxide (3h; see Table 1). Because the use of potassium carbonate with N-Fmoc-hydroxylamine under Plenkowski’s conditions showed no discernible conversion (Table 1, entry 1), we decided to leave basic conditions aside and investigate the ring opening of epoxide under Lewis acid catalysis conditions (Table 1, entries 2–15), which is a method usually used for the insertion of alcohols and/or amines but not yet employed with hydroxylamines as the nucleophile component. The ring opening of epoxide with N-Fmoc-hydroxylamine was first investigated with BF3·Et2O in dichloromethane (Table 1, entry 2), conditions that are known to be efficient for the reaction of benzyl alcohol with a similar epoxide, but this approach was unsuccessful in this case. The use of lanthanide-based Lewis acids [i.e., Sc(OTf)3 and Yb(OTf)3] also failed (Table 1, entries 3–6). Changing the nucleophile to N-Boc hydroxylamine or N-hydroxyxypiperidine, presumably more nucleophilic species, was also unproductive with numerous types of Lewis acid [LiBr, InCl3, ZrCl4, Cu(OTf)2, or Ti(OPr)4; Table 1, entries 7–15]. Finally, we envisaged an alternative two-step procedure based on the intermediate introduction of an oxime under basic conditions as a hydroxylamine precursor, followed by its acid-mediated cleavage to give the expected β-hydroxy O-alkyl hydroxylamine. Oximes are more nucleophilic than hydroxylamines under basic conditions and their high-yield ring-opening of epoxides has been described. Thus, the group of Soltani Rad recently described the aqueous-mediated ring opening of various epoxides with a range of oximes. Their protocol involved the use of a slight excess of potassium hydroxide (1.3 equiv) to deprotonate the oxime (1 equiv) in a mixture of water–dimethyl sulfoxide (DMSO) (7:3) at room temperature, followed by the addition of an excess of epoxide (1.5 equiv). Similar conditions were evaluated on cyclopentene oxide (3h) but with a slight excess of acetophenone oxime, as it would ultimately represent the least precious component in reactions employing more complex epoxides (Table 1, entry...
Surprisingly, the solvent system used by Soltani Rad et al. was not efficient for our model epoxide and only traces of the expected compound were obtained. Heating to 90 °C led to formation of the desired oxime \(4h\) in low yield (23%; Table 1, entry 17). Switching from DMSO to \(N,N\)-dimethylformamide (DMF) did not increase the yield at room temperature (Table 1, entry 18) but compound \(4h\) was obtained in a good yield at 90 °C (73%; Table 1, entry 19).

With conditions established for the ring-opening of cyclopentene oxide by acetophenone oxime, we next focused on the cleavage of the oxime functionality to liberate the \(O\)-alkyl hydroxylamine. After many unfruitful assays under acidic conditions, we found that 2,4-dinitrophenylhydrazine was efficient for the liberation of \(O\)-alkyl hydroxylamine from oximes with generation of 2,4-dinitrophenylhydrazine as a by-product. We also established that protection of the hydroxylamine product in situ was possible by reaction with FmocCl, CbzCl, or AllocCl, which provides a means to isolate the target compound in the form of a carbamate, cleavable under basic, acidic, or metal-catalyzed conditions. To evaluate the scope of the process, we tested its versatility towards various epoxides, so as to obtain the corresponding \(\beta\)-hydroxy \(O\)-alkyl hydroxylamines. The results, presented in Table 2, show regioselective ring-opening of terminal epoxides with preferential attack at the less hindered position (Table 2, entries 1–6). The presence of a double bond or an aromatic core did not affect the yield (Table 2, entries 1 and 3). The PMP-protected glycidol epoxide furnished \(\alpha\)-hydroxyoxime \(4a\) in 83% yield. Hydrolysis of the oxime furnished free hydroxylamine \(5a\) in 77% yield or \(6a\)–\(8a\) in a range of 80–89%, depending on the carbamate used (Table 2, entry 1). A free hydroxyl group was found to be compatible with the ring opening but decreased the yield to 46% (Table 2, entry 4). In the case of epichlorohydrin (Table 2, entry 5), the epoxide, which is known to be the more reactive site,\(^{12}\) was opened smoothly to afford \(4e\) with acetophenone oxime in 73% yield. Unfortunately, the presence of an epoxide was not compatible with 2,4-dinitrophenylhydrazine-mediated cleavage of the oxime (Table 2, entry 5). Thus, epoxide \(4e\) was opened with a second equivalent of acetophenone oxide to give \(4f\) in good yield (Table 2, entry 6). Highly functionalized Cerny’s epoxide \(3j\) was converted into its \(\beta\)-hydroxy \(O\)-alkyl hydroxylamine derivative \(5j\) in 76% over two steps (Table 2, entry 9). Protection as carbamates in situ was also successful, and \(5\)–\(8j\) were obtained in high yields (Table 2, entry 9). Finally, the cyclopentene-derived epoxide \(1a\) was opened with acetophenone oxime at 90 °C and converted into the Fmoc-protected targeted skeleton \(2a\) in good yield (73%) over two steps (Table 2, entry 10). In conclusion, we have established a convenient two-step procedure for the synthesis of \(\beta\)-hydroxy \(O\)-alkyl hydroxylamines by oxime-mediated regioselective opening of epoxides under basic conditions, followed by cleavage of the resulting oxime by 2,4-dinitrophenylhydrazine. We showed that various protecting groups could be introduced for protection of the highly polar resulting \(O\)-alkyl hydroxylamines in situ. The scope of the reaction revealed its good tolerance for alkenes, halogens, and alcohols.

Reactions were performed under an atmosphere of argon and monitored by thin-layer chromatography on Merck silica gel plates (60 F254 aluminum sheets). All separations were carried out under flash-chromatographic conditions on silica gel (Redi Sep prepacked column, 230–400 mesh) with the use of a Combiflash Companion. \(N,N\)-Dimethylformamide (DMF) was purified by filtration through an activated alumina column under argon. MeOH was purchased from Acros Organics at the highest commercial quality and used without further purification. Reagent-grade chemicals were ob-

Table 1 Ring Opening of Cyclopentene Oxide with Hydroxylamine-Derived Nucleophiles

<table>
<thead>
<tr>
<th>Entry</th>
<th>Nucleophile</th>
<th>LA (cat.) or base</th>
<th>Solvent</th>
<th>Temp (°C)</th>
<th>Yield (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HONHFmoc</td>
<td>KO2CO</td>
<td>EtOH</td>
<td>60</td>
<td>NR</td>
</tr>
<tr>
<td>2</td>
<td>HONHFmoc</td>
<td>BF3Et2O</td>
<td>CH2Cl2</td>
<td>r.t.</td>
<td>NR</td>
</tr>
<tr>
<td>3</td>
<td>Sc(OF3)3</td>
<td>CH2Cl2</td>
<td>r.t.</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sc(OF3)3</td>
<td>MeCN</td>
<td>r.t.</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sc(OF3)3</td>
<td>THF</td>
<td>r.t.</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Yb(OF3)3</td>
<td>THF</td>
<td>r.t.</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>HONHBoc</td>
<td>Sc(OF3)3</td>
<td>CH2Cl2</td>
<td>r.t.</td>
<td>NR</td>
</tr>
<tr>
<td>8</td>
<td>Yb(OF3)3</td>
<td>CH2Cl2</td>
<td>r.t.</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Sc(OF3)3</td>
<td>CH2Cl2</td>
<td>r.t.</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Yb(OF3)3</td>
<td>CH2Cl2</td>
<td>r.t.</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>LiBr</td>
<td>CH2Cl2</td>
<td>r.t.</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>InCl3</td>
<td>CH2Cl2</td>
<td>r.t.</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Ti(OiPr)4</td>
<td>CH2Cl2</td>
<td>r.t.</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Cu(OF3)2</td>
<td>CH2Cl2</td>
<td>r.t.</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ZrCl4</td>
<td>CH2Cl2</td>
<td>r.t.</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>KOH</td>
<td>H2O–DMSO</td>
<td>r.t.</td>
<td>trace</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>KOH</td>
<td>H2O–DMSO</td>
<td>90</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>KOH</td>
<td>DMF</td>
<td>r.t.</td>
<td>trace</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>KOH</td>
<td>DMF</td>
<td>90</td>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>

*Isolated yield.

\(^{b}\) NR = no reaction.

\(^{c}\) In a 7:3 ratio.
Table 2 Scope of the Two-Step Procedure; Synthesis of β-Hydroxy O-Alkyl Hydroxylamines

<table>
<thead>
<tr>
<th>Entry</th>
<th>Epoxide 3</th>
<th>O-Alkyl oxime 4</th>
<th>Product Yield (%)<sup>a</sup></th>
<th>O-Alkyl hydroxylamine 5–8</th>
<th>R<sup>1</sup></th>
<th>Product Yield (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OPMP</td>
<td>Ph</td>
<td>OH</td>
<td>OPMP</td>
<td>4a</td>
<td>83</td>
</tr>
<tr>
<td>2</td>
<td>alkyl, alkoxy, aryloxy</td>
<td>Ph</td>
<td>OH</td>
<td></td>
<td>4b</td>
<td>74<sup>d</sup></td>
</tr>
<tr>
<td>3</td>
<td>alkyl, alkoxy, aryloxy</td>
<td>Ph</td>
<td>OH</td>
<td></td>
<td>4c</td>
<td>84<sup>d</sup></td>
</tr>
<tr>
<td>4</td>
<td>alkyl, alkoxy, aryloxy</td>
<td>Ph</td>
<td>OH</td>
<td></td>
<td>4d</td>
<td>46<sup>e</sup></td>
</tr>
<tr>
<td>5</td>
<td>alkyl, alkoxy, aryloxy</td>
<td>Ph</td>
<td>OH</td>
<td></td>
<td>4e</td>
<td>73</td>
</tr>
<tr>
<td>6</td>
<td>alkyl, alkoxy, aryloxy</td>
<td>Ph</td>
<td>OH</td>
<td></td>
<td>4f</td>
<td>86</td>
</tr>
<tr>
<td>7</td>
<td>alkyl, alkoxy, aryloxy</td>
<td>Ph</td>
<td>OH</td>
<td></td>
<td>4h</td>
<td>73<sup>e</sup></td>
</tr>
<tr>
<td>8</td>
<td>alkyl, alkoxy, aryloxy</td>
<td>Ph</td>
<td>OH</td>
<td></td>
<td>4i</td>
<td>89<sup>f</sup></td>
</tr>
<tr>
<td>9</td>
<td>alkyl, alkoxy, aryloxy</td>
<td>Ph</td>
<td>OH</td>
<td></td>
<td>4j</td>
<td>89<sup>f</sup></td>
</tr>
<tr>
<td>10</td>
<td>alkyl, alkoxy, aryloxy</td>
<td>Ph</td>
<td>OH</td>
<td></td>
<td>4k</td>
<td>84<sup>e</sup></td>
</tr>
</tbody>
</table>

^a Isolated yield.
^b PMP = p-methoxyphenyl.
^c The yield dropped to 54% when only 2 equiv of H₂SO₄ were used.
^d Reaction performed at 50 °C.
^e Reaction performed at 90 °C.
^f Formation of the expected product was not observed.
^g Formation of the expected product was observed by 1H NMR spectroscopic analysis, but its isolation was troublesome.
^h The expected product was obtained as an inseparable mixture with Fmoc-protected 2,4-dinitrophenylhydrazine.
tained from Sigma–Aldrich or Acros Organics chemical companies and were used as received. Optical rotations were measured with an Anton Paar MCP 300 polarimeter at 589 nm and are expressed in deg·cm^2·g^{-1}·dm^{-1} and c is expressed in g/100 cm^3. IR spectra were recorded with a Perkin–Elmer FT-IR system using a diamond window Dura SamplIR II and the data are reported in reciprocal centimeters (cm^{-1}). \textit{H} (500 or 300 MHz) and \textit{C} (125 or 75 MHz) NMR spectra were recorded with Bruker Avance spectrometers. Chemical shifts are given in ppm (δ) and are referenced to the internal solvent signal or to TMS used as an internal standard. High-resolution mass spectra (HRMS) were recorded with a Micromass LCT Premier XE instrument (Waters) and were determined by electrospray ionization (ESI).

Epoxide Opening: General Procedure A

Acetophenone oxime (1.5 equiv) and KOH (3 equiv) were dissolved in anhydrous DMF (0.15 M in epoxide) and the solution was stirred at r.t. for 30 min. A solution of epoxide (1 equiv) in anhydrous DMF (0.3 M in epoxide) was then added and the mixture was stirred at the indicated temperature for 16 h. After addition of H₂O,aq HCl (1 M) was added dropwise until pH 1–2. The mixture was extracted with MTBE (3×) and the combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in vacuo.

1H NMR (500 MHz, CDCl₃): δ = 2.25 (s, 3 H, Me), 3.75 (s, 3 H, OMe), 3.98–4.06 (m, 2 H, H-3), 4.31–4.44 (m, 3 H, H-1, H-2), 6.82 (d, J = 8.9 Hz, 2 H, ArH), 6.87 (d, J = 8.9 Hz, 2 H, ArH), 7.32–7.39 (m, 3 H, Ph-H), 7.57–7.65 (m, 2 H, Ph-H).

13C NMR (75 MHz, CDCl₃): δ = 12.7 (CH₂), 55.6 (OCH₃), 69.5 (C-2), 71.6 (C-3), 70.0 (C-2), 74.6 (C-1), 114.6 (C-AR), 115.6 (C-AR), 126.2 (C-3), 128.4 (C-2), 129.3 (C-1), 130.6 (C-2), 135.0 (C-3), 135.8 (C-1), 154.0 (Cq=N), 155.8 (Cq-OMe).

HRMS (ESI-TOF): m/z [M + H]^+ calcd for C₁₀H₁₄NO₂: 220.1136; found: 220.1138.

4b

The reaction was carried out according to General Procedure A with 2,3-dihydroxypropyl oxime (4d). The mixture was stirred at 90 °C for 16 h and worked up as described. The crude product was purified by preparative HPLC (NW50 column, Merck; heptane–EtOAc, 10:0→9:1) to give 4b.

Yield: 97 mg (0.464 mmol, 46%); pale-yellow oil; [α]₀^{24} = -12.6 (c 0.19, CHCl₃); Rₛ = 0.22 (heptane–EtOAc, 3:7).

IR (neat): 3461, 2976, 2932, 2873, 1497, 1445, 1370, 1311, 1038, 754, 690 cm^{-1}.

1H NMR (300 MHz, CDCl₃; δ = 2.24 (s, 3 H, Me), 3.26 (br s, 2 H, 2 × OH), 3.66 and 3.74 (ABX, Jₘₙ = 11.6 Hz, Jₚₙ = 3.9 Hz, Jₐₚ = 5.9 Hz, 2 H, H-3), 4.01–4.12 (m, 1 H, H-2), 4.25 (d, J = 5.3 Hz, 2 H, H-1), 7.32–7.39 (m, 3 H, Ph-H), 7.55–7.63 (m, 2 H, Ph-H).

13C NMR (75 MHz, CDCl₃): δ = 12.8 (CH₂), 63.6 (C-3), 71.6 (C-1), 74.6 (C-2), 126.0 (C-3), 128.4 (C-2), 129.3 (C-1), 130.6 (C-2), 154.0 (Cq=N), 155.8 (Cq-OMe).

HRMS (ESI-TOF): m/z [M + H]^+ calcd for C₁₀H₁₄NO₂: 210.1130; found: 210.1133.

4e

The reaction was carried out according to General Procedure A with epichlorohydrin (234 μL, 3 mmol), acetophenone oxime (405 mg, 3 mmol) and KOH (336 mg, 6 mmol) in DMF (20 mL). The mixture was stirred at r.t. for 16 h and worked up as described. The crude product was purified by column chromatography (heptane–EtOAc, 4:1) to give 4e.

Yield: 420 mg (2.2 mmol, 73%); colorless oil; Rₛ = 0.48 (heptane–EtOAc, 7:3).

IR (neat): 3056, 3001, 2926, 2876, 1497, 1445, 1370, 1311, 1038, 992, 909, 885, 759, 693 cm⁻¹.
Yield: 147.5 mg (0.45 mmol, 86%); colorless oil; 998, 935, 919, 889, 759 cm⁻¹.

IR (neat): 3423, 3059, 2931, 2877, 1497, 1444, 1369, 1311, 1042, 155.6 (C=N).

13C NMR (75 MHz, CDCl₃): δ = 12.7 (CH₃), 44.8 (C-3), 50.2 (C-2), 74.8 (C-1), 126.0 (CH-Ph), 128.3 (CH-Ph), 136.3 (C₆Ph), 155.3 (C₆N=).

(1E,1′E)-Acetophenone O-(2-Hydroxy-3-[(1E)-1-phenylethylidene]amino[oxoy]propyl) Oxime (4f)
The reaction was carried out according to General Procedure A with 4c (100 mg, 0.52 mmol), acetophenone oxime (106.1 mg, 0.78 mmol) and KOH (88 mg, 1.6 mmol) in DMF (5 mL). The mixture was stirred at r.t. for 16 h and worked up as described. The crude product was purified by column chromatography (heptane–EtOAc, 7:3) to give 4f.

Yield: 147.5 mg (0.45 mmol, 86%); colorless oil; Rf = 0.63 (heptane–EtOAc, 3:2).

IR (neat): 3358, 3059, 2877, 1497, 1444, 1369, 1311, 1042, 998, 935, 919, 889, 759 cm⁻¹.

1H NMR (300 MHz, CDCl₃): δ = 2.28 (s, 6 H, Me), 4.26–4.42 (m, 5 H, H-1, H-2), 7.32–7.41 (m, 6 H, Ph-H), 7.59–7.69 (m, 4 H, Ph-H).

13C NMR (75 MHz, CDCl₃): δ = 12.8 (CH₃), 70.8 (C-2), 74.8 (C-1), 126.0 (CH-Ph), 128.4 (CH-Ph), 136.2 (C₆Ph), 155.6 (C₆N=).

(1E)-Acetophenone O-(trans)-2-Hydroxycyclopentyl) Oxime (4h)
The reaction was carried out according to General Procedure A with cyclopentene oxide (50 mg, 0.6 mmol), acetophenone oxime (121 mg, 0.9 mmol) and KOH (100 mg, 1.8 mmol) in DMF (6 mL). The mixture was stirred at 90 °C for 16 h and worked up as described. The crude product was purified by column chromatography (heptane–EtOAc, 80:20) to give 4h.

Yield: 96 mg (0.44 mmol, 73%); colorless oil; Rf = 0.31 (heptane–EtOAc, 4:1).

IR (neat): 3358, 3056, 2961, 1496, 1445, 1369, 1316, 1083, 1037, 995, 973, 914, 760, 693 cm⁻¹.

1H NMR (300 MHz, CDCl₃): δ = 1.56–1.83 (m, 4 H, H-3, H-4, H-5), 1.93–2.18 (m, 2 H, H-3, H-5), 2.21 (s, 3 H, Me), 2.87 (br s, 1 H, H-2), 3.69–3.76 (m, 1 H, H-2), 5.79–5.96 (m, 4 H, Ph-H).

13C NMR (75 MHz, CDCl₃): δ = 12.7 (CH₃), 20.8 (C-4), 28.5 (C-5), 31.6 (C-3), 77.8 (C-2), 89.7 (C-1), 126.0 (CH-Ph), 128.3 (CH-Ph), 129.1 (CH-Ph), 136.5 (C₆Ph), 151.5 (C₆N=).

(1E)-Acetophenone O-(trans)-2-Hydroxycyclohexyl) Oxime (4i)
The reaction was carried out according to General Procedure A with cyclohexene oxide (46.1 mg, 0.5 mmol), acetophenone oxime (101.1 mg, 0.75 mmol) and KOH (84 mg, 1.5 mmol) in DMF (5 mL). The mixture was stirred at r.t. for 16 h and worked up as described. The crude product was purified by preparative HPLC (Europsher 100–5 Si column, Knauer; 250 × 20 mm; heptane–EtOAc, 10:0–7:3 over 40 min; 12 mL/min; UV detection at 254 nm) to give 4i.

Yield: 104.4 mg (0.45 mmol, 89%); colorless oil; Rf = 0.32 (heptane–EtOAc, 7:3).

IR (neat): 3429, 2923, 2862, 1497, 1447, 1371, 1074, 1039, 1007, 998, 936, 920, 760, 693 cm⁻¹.

1H NMR (500 MHz, CDCl₃): δ = 2.04 (ddd, J = 0.9, 7.6, 15.3 Hz, 1 H, H-5), 2.18 (d, J = 15.3 Hz, 1 H, H-5), 2.65 (J = 5.8 Hz, 1 H, H-2), 3.37 and 3.40 (ABX, JAB = 9.5 Hz, JAX = 6.1 Hz, JBX = 6.1 Hz, 2 H, CH₂-OBn), 3.46 (d, J = 2.1 Hz, 1 H, H-4), 3.54 (br s, 1 H, H-3), 3.93 (d, J = 7.6 Hz, 1 H, H-1), 4.45 (s, 2 H, CH₂-Bn), 4.61 and 4.68 (AB, JAB = 12.8 Hz, 2 H, CH₂-NAP), 7.20–7.33 (m, 5 H, ArH), 7.40–7.50 (m, 3 H, ArH), 7.69–7.84 (m, 4 H, ArH).

13C NMR (75 MHz, CDCl₃): δ = 34.8 (C-5), 47.4 (C-2), 57.9 (C-3), 59.7 (C-4), 69.2 (CH₂-OBn), 70.9 (CH₂-NAP), 73.2 (CH₂-Bn), 80.9

© Georg Thieme Verlag Stuttgart · New York

Synthesis 2013, 45, 65–74

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
N-Protected 1-Alkyl Hydroxylamine; General Procedure B

To a solution of β-hydroxy oxime O-ether (1 equiv) in anhydrous MeOH (0.13 M) were added H$_2$SO$_4$ (10 equiv) and 2,4-dinitrophenylhydrazine (2 equiv) and the mixture was stirred at r.t. for 16 h. After dilution with MeOH (4 × initial volume), powdered NaHCO$_3$ (20 equiv) was added slowly at 0 °C, followed by protecting reagent (5 equiv). The reaction mixture was stirred for 3 h at r.t. and then worked up with EtOAc (2 × volume of MeOH). The organic layer was washed with H$_2$O (2×), brine, dried over Na$_2$SO$_4$, and concentrated in vacuo. Purification by column chromatography with the indicated eluent gave the expected N-protected β-hydroxy O-alkyl hydroxylamine.

1-(Aminoxy)-3-(4-methoxyphenoxo)propan-2-ol (5a)

To a solution of 4a (79 mg, 0.25 mmol, 1 equiv) in anhydrous MeOH (2 mL) were added H$_2$SO$_4$ (135 μL, 2.5 mmol, 10 equiv) and 2,4-dinitrophenylhydrazine (99 mg, 0.5 mmol, 2 equiv) and the mixture was stirred at r.t. for 16 h. Powdered NaHCO$_3$ (420 mg, 5 mmol, 20 equiv) was then added slowly and the reaction mixture was diluted with H$_2$O (20 mL). The aqueous layer was extracted with EtOAc (3 × 15 mL) and the combined organic layers were washed with H$_2$O (20 mL), brine (20 mL), dried over Na$_2$SO$_4$ and concentrated in vacuo. Purification by column chromatography (heptane–EtOAc, 1:1–4:3) gave 5a.

Yield: 41 mg (0.192 mmol, 77%); pale-yellow amorphous solid; $R_f = 0.10$ (heptane–EtOAc, 1:4).

IR (near): 3301, 3249, 2935, 1513, 1240, 1046, 1033, 825 cm$^{-1}$.

1H NMR (300 MHz, CDCl$_3$): δ = 3.76 (s, 3 H, OMe), 3.83 and 3.90 (ABX, $J_{AB} = 11.7$ Hz, $J_{AX} = 3.1$ Hz, $J_{BX} = 6.5$ Hz, 2 H, H-1), 3.96 (d, $J = 5.6$ Hz, 2 H, H-3), 4.22–4.30 (m, 1 H, H-2), 6.79–6.89 (m, 4 H, ArH).

13C NMR (75 MHz, CDCl$_3$): δ = 55.7 (OCH$_3$), 69.5 (C-3), 70.0 (C-2), 75.8 (C-1), 114.6 (CH-Ar), 152.7 (Cq-O), 154.0 (Cq-OMe).

HRMS (ESI-TOF): m/z [M + H]$^+$ calcd for C$_{24}$H$_{26}$NONaO$_2$: 458.1580; found: 458.1573.

Benzylo-2-Hydroxy-3-(4-methoxyphenoxo)propanoyl carbamate (7a)

The reaction was carried out according to General Procedure B with 4a (79 mg, 0.25 mmol), 2,4-dinitrophenylhydrazine (99 mg, 0.5 mmol), H$_2$SO$_4$ (135 μL, 2.5 mmol) in MeOH (2 mL), and then with NaHCO$_3$ (420 mg, 5 mmol) and FmocCl (323 mg, 1.25 mmol) in MeOH (10 mL). The mixture was worked up as described and the crude product was purified by column chromatography (heptane–EtOAc, 8:2–7:3) to give 7a.

Yield: 69 mg (0.199 mmol, 80%); yellow amorphous solid; $R_f = 0.24$ (heptane–EtOAc, 3:2).

IR (near): 3406, 3160, 2954, 1724, 1504, 1266, 1232, 1129, 1109, 1041, 823, 739, 696 cm$^{-1}$.

1H NMR (300 MHz, CDCl$_3$): δ = 3.76 (s, 3 H, OMe), 3.92–4.12 (m, 4 H, H-1, H-3), 4.20–4.29 (m, 1 H, H-2), 5.19 (s, 2 H, CH$_2$-OBn), 6.78–6.87 (m, 4 H, ArH), 7.33–7.40 (m, 5 H, ArH), 7.63 (s, 1 H, NH).

13C NMR (75 MHz, CDCl$_3$): δ = 55.7 (OCH$_3$), 67.5 (C-2), 68.1 (CH$_2$OBn), 69.1 (C-3), 78.9 (C-1), 114.7 (CH-Ar), 115.5 (CH=Ar), 120.1 (CH-Ar), 124.9 (CH-Ar), 127.9 (CH-Ar), 141.3 (C$_2$Fmoc), 143.2 (C$_2$Fmoc), 143.3 (C$_2$Fmoc), 152.6 (Cq-O), 154.1 (C$_2$OMe), 158.6 (C=O).

HRMS (ESI-TOF): m/z [M + Na]$^+$ calcd for C$_{22}$H$_{24}$N$_2$O$_3$: 346.1301; found: 346.1306.

Alyl-2-Hydroxy-3-(4-methoxyphenoxo)propanoyl carbamate (8a)

The reaction was carried out according to General Procedure B with 4a (79 mg, 0.25 mmol), 2,4-dinitrophenylhydrazine (99 mg, 0.5 mmol), H$_2$SO$_4$ (135 μL, 2.5 mmol) in MeOH (2 mL), and then with NaHCO$_3$ (420 mg, 5 mmol) and AllocCl (133 μL, 1.25 mmol)
MeOH (10 mL). The mixture was worked up as described and the crude product was purified by column chromatography (heptane–EtOAc, 8:2–7:3) to give 8a.

Yield: 66 mg (0.222 mmol, 89%); yellow amorphous solid; \(R_f = 0.18 \) (heptane–EtOAc, 3:2).

IR (neat): 3351, 3177, 2933, 2913, 1708, 1507, 1267, 1220, 1104, 994, 827, 756 cm\(^{-1}\).

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 3.76 \) (s, 3 H, OMe), 3.92–4.12 (m, 4 H, H-2, H-5), 4.21–4.29 (m, 1 H, H-2), 4.64–4.72 (t, \(J = 1.3 \) Hz, 1 H, CH\(_2\)-CH\(_2\)-CHO), 4.66 (t, \(J = 1.3 \) Hz, 1 H, CH\(_2\)-CH\(_2\)-CHO), 5.23–5.38 (m, 2 H, CH\(_2\)-CH\(_2\)-CHO), 5.83–5.98 (m, 1 H, CH\(_2\)-CH=CHO), 6.78–6.87 (m, 4 H, ArH), 7.89 (s, 1 H, NH).

\(^13\)C NMR (75 MHz, CDCl\(_3\)): \(\delta = 55.7 \) (OCH\(_3\)), 66.8 (CH\(_2\)-CH=CHO), 67.5 (C-2), 69.1 (C-3), 78.8 (C-1), 114.6 (CH-Ar), 115.5 (CH-Ar), 119.0 (CH\(_2\)-CH=CH), 131.5 (CH\(_2\)-CH=CH), 152.6 (C\(_7\)-O), 154.0 (C\(_6\)-O), 158.5 (C=O).

HRMS (ESI-TOF): \(m/z \left[M + Na \right]^{+} \) calcd for \(C_{14}H_{19}NNaO_6 \): 326.1368; found: 326.1371.

(5S,9H-Fluoren-9-yl)methyl (2,3-Dihydroxypropanoyl)carbamate (6d)

The reaction was carried out according to General Procedure B with 4d (80 mg, 0.382 mmol), 2,4-dinitrophenylhydrazine (152 mg, 0.765 mmol) in MeOH (3 mL), and then with NaHCO\(_3\) (242 mg, 4.54 mmol) and FmocCl (494 mg, 1.91 mmol) in MeOH (15 mL). The mixture was worked up as described and the crude product was purified by column chromatography (heptane–EtOAc, 1:1–0:1) to give 6d.

Yield: 117 mg (0.355 mmol, 93%); pale-yellow amorphous solid; \(\delta_{4H}^{1H} = 4.14–4.20 \) (1 H, H-4), 17.4 (2 H, CH\(_2\)-CH=C).
Yield: 152.8 mg (0.451 mmol, 99%); pale-yellow oil; \(R_f = 0.13 \) (heptane–EtOAc, 7:3).

IR (neat): 3270, 2957, 1723, 1450, 1251, 1115, 908, 758, 728 cm\(^{-1}\).

1\(^H\) NMR (500 MHz, CDCl\(_3\)): \(\delta = 1.49–1.58 \) (m, 1 H, H-3), 1.59–1.73 (m, 3 H, H-4, H-5), 1.89–2.00 (m, 2 H, H-3, H-5), 2.36 (br s, 1 H, OH), 3.64–4.09 (m, 1 H, H-1), 4.13–4.18 (m, 1 H, H-2), 2.40 (t, \(J = 6.7 \) Hz, CH-Fmoc), 4.50 (d, \(J = 6.7 \) Hz, 2 H, CH\(_2\)-Fmoc), 7.29 (dd, \(J = 3.6, 7.5 \) Hz, 2 H, ArH), 7.38 (t, \(J = 7.3 \) Hz, 2 H, ArH), 7.55 (br s, 1 H, NH), 7.56 (d, \(J = 7.3 \) Hz, 2 H, ArH), 7.74 (d, \(J = 7.6 \) Hz, 2 H, ArH).

13\(^C\) NMR (75 MHz, CDCl\(_3\)): \(\delta = 20.5 \) (C-5), 27.9 (C-5), 31.7 (C-3), 47.3 (CH-Fmoc), 76.7 (CH\(_2\)-Fmoc), 75.8 (C-2), 93.5 (C-1), 120.2 (CH-Ar), 125.1 (CH-Ar), 127.3 (CH-Ar), 128.0 (CH-Ar), 141.5 (C\(_q\)-Fmoc), 143.6 (C\(_q\)-Fmoc), 158.3 (C=O).

HRMS (ESI-TOF): \(m/z \) [M + H\(^+\)] calcd for C\(_{16}\)H\(_{19}\)NO\(_5\): 318.1341; found: 318.1350.

Fluorenylmethyl ([1R,2R,3S,4R,5R]-3-Hydroxy-2-(naphthalen-2-yImethoxy)-6,8-dioxabicyclo[3.2.1]octan-4-yl)oxycarbamate (6j)
The reaction was carried out according to General Procedure B with 4j (100 mg, 0.238 mmol), 2,4-dinitrophenylhydrazine (94 mg, 0.477 mmol), and H\(_2\)SO\(_4\) (128 \(\mu \)L, 2.38 mmol) in MeOH (2 mL). THF (100 \(\mu \)L) was added to improve the solubility of the starting material. After 16 h at r.t., 2,4-dinitrophenylhydrazine (47 mg, 0.238 mmol, 1 equiv) was added to complete the reaction and the mixture was stirred for 2 h before being diluted with MeOH (8 mL). NaHCO\(_3\) (400 mg, 4.76 mmol) and FmocCl (308 mg, 1.19 mmol) were added and the reaction mixture was stirred at r.t. for 4 h. Addition of NaHCO\(_3\) (200 mg, 2.38 mmol) and FmocCl (154 mg, 0.595 mmol) were necessary to complete the reaction. The mixture was then stirred overnight and worked up as described. Purification by column chromatography (heptane–EtOAc, 4:1–3:2) afforded 6j.

Yield: 98 mg (0.182 mmol, 76%); pale-yellow amorphous solid; \([\alpha]_D^{24} +2.6 \) (c 0.94, CHCl\(_3\)); \(R_f = 0.21 \) (heptane–EtOAc, 1:1).

IR (neat): 3264, 1725, 1450, 1249, 1102, 1073, 1009, 757, 739 cm\(^{-1}\).

1\(^H\) NMR (300 MHz, CDCl\(_3\)): \(\delta = 3.36 \) (dd, \(J = 0.8, 4.5 \) Hz, 1 H, H-4), 3.56–3.63 (m, 2 H, H-2, H-6), 3.74 (d, \(J = 7.5 \) Hz, 1 H, H-6), 3.95 (t, \(J = 4.5 \) Hz, 1 H, H-1), 4.18 (t, \(J = 6.6 \) Hz, 1 H, CH-Fmoc), 4.42–4.56 (m, 3 H, H-5, CH-Fmoc), 4.76 and 4.87 (AB, \(J_{AB} = 12.4 \) Hz, 2 H, CH\(_2\)-NAP), 5.55 (s, 1 H, H-1), 7.22–7.57 (m, 9 H, ArH), 7.68–7.84 (m, 6 H, ArH), 7.91 (s, 1 H, NH).

13\(^C\) NMR (75 MHz, CDCl\(_3\)): \(\delta = 46.9 \) (CH-Fmoc), 66.5 (C-6), 67.7 (CH-Fmoc), 69.4 (C-3), 72.0 (CH\(_2\)-NAP), 75.7 (C-5), 79.4 (C-4), 86.4 (C-2), 100.1 (C-1), 120.0 (CH-Ar), 124.9 (CH-Ar), 125.8 (CH-Ar), 126.0 (CH-Ar), 126.2 (CH-Ar), 126.8 (CH-Ar), 127.2 (CH-Ar), 127.7 (CH-Ar), 128.3 (CH-Ar), 133.0 (C\(_q\)-NAP), 135.1 (C\(_q\)-NAP), 141.3 (C\(_q\)-Fmoc), 143.2 (C\(_q\)-Fmoc), 153.3 (C\(_q\)-Fmoc), 158.3 (C=O).

HRMS (ESI-TOF): \(m/z \) [M + NH\(_4\)+] calcd for C\(_{32}\)H\(_{33}\)N\(_2\)O\(_7\): 557.2288; found: 557.2264.

Benzyl ([1R,2R,3S,4R,5R]-3-Hydroxy-2-(naphthalen-2-yImethoxy)-6,8-dioxabicyclo[3.2.1]octan-4-yl)oxycarbamate (7j)
The reaction was carried out according to General Procedure B with 4j (100 mg, 0.238 mmol), 2,4-dinitrophenylhydrazine (141 mg, 0.714 mmol, 3 equiv), and H\(_2\)SO\(_4\) (128 \(\mu \)L, 2.38 mmol) in MeOH (2 mL) and THF (100 \(\mu \)L, added to improve the solubility of the starting material) and then with NaHCO\(_3\) (400 mg, 4.76 mmol) and CbzCl (179 mg, 1.19 mmol) in MeOH (8 mL). The mixture was worked up as described and the crude product was purified by column chromatography (heptane–EtOAc, 8:2–6:4) to give 7j.

Yield: 95 mg (0.210 mmol, 88%); pale-yellow oil; \([\alpha]_D^{24} +0.3 \) (c 1.02, CHCl\(_3\)); \(R_f = 0.15 \) (heptane–EtOAc, 3:2).

IR (neat): 3384, 3209, 1721, 1511, 1269, 1110, 1076, 1011, 993, 973, 877, 826, 751, 735 cm\(^{-1}\).

Synthesis 2013, 45, 65–74

© Georg Thieme Verlag Stuttgart · New York

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
Synthesis of β-Hydroxy O-Alkyl Hydroxylamines

1H NMR (300 MHz, CDCl3): δ = 3.36 (dd, J = 0.8, 4.5 Hz, 1 H, H-6), 3.57 (dd, J = 5.7, 7.5 Hz, 1 H, H-6), 3.66–3.75 (m, 2 H, H-2, H-6), 3.99 (d, J = 4.7 Hz, 1 H, H-3), 4.51 (d, J = 5.3 Hz, 1 H, H-5), 4.75 and 4.87 (AB, J = 12.3 Hz, 2 H, CH2-NAP), 5.10 and 5.11 (AB, J = 12.2 Hz, 2 H, CH2-Cbz), 5.60 (s, 1 H, H-1), 7.26–7.31 (m, 5 H, ArH), 7.41–7.49 (m, 3 H, ArH), 7.74–7.82 (m, 6 H, ArH), 8.13 (s, 1 H, NH).

13C NMR (75 MHz, CDCl3): δ = 66.4 (C-6), 67.9 (CH2-Cbz), 69.4 (C-3), 71.9 (CH2-NAP), 75.6 (C-5), 79.5 (C-4), 86.6 (C-2), 100.1 (C-1), 125.7 (CH-AR), 126.0 (CH-AR), 126.1 (CH-AR), 126.7 (CH-AR), 127.8 (CH-AR), 128.2 (CH-AR), 128.5 (CH-AR), 133.0 (C=NAP), 133.1 (C=NAP), 135.1 (C=NAP), 135.2 (C-6), 158.3 (C=O).

Allyl [(1R,2R,3S,4R,5R)-3-Hydroxy-2-(naphthalen-2-ylmethyl)-6,8-dioxabicyclo[3.2.1]octan-4-yl]oxycarbamate (8j)

The reaction was carried out according to General Procedure B with 4j (37 mg, 0.075 mmol), 2,4-dinitrophenylhydrazine (141 mg, 0.714 mmol, 3 equiv), and H2SO4 (128 µL, 2.38 mmol) in MeOH (2 mL) and THF (100 µL, added to improve the solubility of the starting material) and then, with NaHCO3 (400 mg, 4.76 mmol) and AlloxCl (126 µL, 1.19 mmol) in MeOH (8 mL). The mixture was worked up as described and the crude product was purified by column chromatography (heptane–EtOAc, 8:2→6:4) to give 8j.

Yield: 71 mg (0.177 mmol, 74%); pale-yellow solid; [α]24 = 1.1 (c 0.92, CHCl3); Rf = 0.15 (heptane–EtOAc, 3:2).

IR (neat): 3381, 3217, 1714, 1507, 1258, 1099, 1076, 996, 819, 749 cm⁻¹.

1H NMR (300 MHz, CDCl3): δ = 3.83 (d, J = 4.5 Hz, 1 H, H-4), 3.60 (dd, J = 5.7, 7.5 Hz, 1 H, H-6), 3.67–3.77 (m, 2 H, H-2, H-6), 4.00 (t, J = 4.7 Hz, 1 H, H-3), 4.54 (d, J = 5.3 Hz, 1 H, H-5), 4.59 (d, J = 5.7 Hz, 2 H, CH2-CH2=CH2), 4.78 and 4.90 (AB, J = 12.4 Hz, 2 H, CH2-NAP), 5.18–5.34 (m, 2 H, CH2-CH2-CH2), 5.63 (s, 1 H, H-1), 5.79–5.94 (m, 1 H, CH2-CH2=CH2), 7.42–7.51 (m, 3 H, ArH), 7.75–7.84 (m, 4 H, ArH), 8.18 (s, 1 H, NH).

13C NMR (75 MHz, CDCl3): δ = 66.5 (C-6), 66.7 (CH2-CH=CH2), 69.4 (C-3), 71.9 (CH2-NAP), 75.7 (C-5), 79.5 (C-4), 86.6 (C-2), 100.1 (C-1), 118.9 (CH2-CH=CH2), 125.8 (CH-AR), 126.0 (CH-AR), 126.1 (CH-AR), 127.6 (CH-AR), 127.8 (CH-AR), 128.1 (CH-AR), 128.4 (CH-AR), 132.9 (C=NAP), 133.2 (C=NAP), 135.6 (C=NAP), 138.1 (C-Bn), 141.3 (C-Fmoc), 143.3 (C-Fmoc), 158.2 (C=O).

Acknowledgment

A.F. and G.M. thank the ICSN for financial support.

Supporting Information

For this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

References

