Synthesis of $\boldsymbol{\beta}$-Hydroxy \boldsymbol{O}-Alkyl Hydroxylamines from Epoxides Using a Convenient and Versatile Two-Step Procedure

Gaëlle Malik, ${ }^{a}$ Angélique Ferry, ${ }^{a}$ Xavier Guinchard, ${ }^{\text {a }}$ David Crich*a,b
${ }^{\text {a }}$ Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
${ }^{\text {b }}$ Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
Fax +1(313)5778822; E-mail: DCrich@chem.wayne.edu

Received: 25.09.2012; Accepted after revision: 06.11.2012

Abstract

A simple and convenient synthetic method was developed to prepare β-hydroxy O -alkyl hydroxylamines in which basemediated ring opening of epoxides with acetophenone oxime followed by cleavage of the oxime with 2,4-dinitrophenylhydrazine in acidic media furnished the hydroxylamine, which can be protected in situ with various N -protecting groups.

Key words: hydroxylamines, epoxides, ring opening, oxime cleavage, protecting groups

O-Alkyl hydroxylamines (or aminooxy compounds), which are non-basic substitutes for amines, ${ }^{1}$ are found in various natural products such as L-canaline ${ }^{2}$ and in various synthetic products displaying interesting biological activities. ${ }^{2,3}$ Along with their β-hydroxy congeners, ${ }^{4}$ these compounds predominantly show enzyme inhibition activities whereby the aminooxy moiety forms a stable oxime with an aldehyde group present on the cofactor. In preparative chemistry these reactive species usually serve as starting material for the preparation of functionalized O alkyl oximes by simple condensation with aldehydes or ketones, often with quantitative yields and with almost complete functional group compatibility. This classical reaction has undergone a renaissance as a chemoselective ligation strategy and has emerged as a powerful means for the assembly of bioconjugates. ${ }^{5}$
In connection with ongoing projects in our laboratory, ${ }^{6}$ we required a variety of β-hydroxy O-alkyl hydroxylamines 2 and conceived that these might be accessed by the opening of epoxides 1 by N -protected hydroxylamines followed by deprotection of the nitrogen atom (Scheme 1). Toward this end, the most efficient approach leading to 2 seemed to be a direct opening of epoxide $\mathbf{1}$ with an N-protected hydroxylamine (i.e., N-Fmoc-hydroxylamine ${ }^{7}$ or commercially available N -Boc-hydroxylamine). Surpris-

Scheme 1

SYNTHESIS 2013, 45, 0065-0074

Advanced online publication: 26.11.2012
DOI: 10.1055/s-0032-1317699; Art ID: SS-2012-M0756-OP
© Georg Thieme Verlag Stuttgart • New York
ingly, such protocols are scarcely documented in the literature. In most reports, N-Boc-hydroxylamine is used under basic conditions, which leads to the expected β-hydroxy O-alkyl hydroxylamines in low to modest yields. ${ }^{4 b, c, 8}$ The successful employment of N-hydroxyphthalimide in this context was also described by Porco and co-workers ${ }^{9}$ with promotion by a Co-oligosalen catalyst. ${ }^{10}$ In pursuit of our goal, we initially looked for viable conditions on commercially available cyclopentene oxide ($\mathbf{3 h}$; see Table 1). Because the use of potassium carbonate with N -Fmoc-hydroxylamine under Plenkiewicz's conditions ${ }^{8 \mathrm{~b}}$ showed no discernible conversion (Table 1, entry 1), we decided to leave basic conditions aside and investigate the ring opening of epoxide $\mathbf{3 h}$ under Lewis acid catalysis conditions (Table 1, entries 2-15), which is a method usually used for the insertion of alcohols and/or amines but not yet employed with hydroxylamines as the nucleophile component. The ring opening of epoxide $\mathbf{3 h}$ with N-Fmoc-hydroxylamine was first investigated with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in dichloromethane (Table 1, entry 2), conditions that are known to be efficient for the reaction of benzyl alcohol with a similar epoxide, ${ }^{6 a}$ but this approach was unsuccessful in this case. The use of lanthanide-based Lewis acids [i.e., $\mathrm{Sc}(\mathrm{OTf})_{3}$ and $\mathrm{Yb}(\mathrm{OTf})_{3}$] also failed (Table 1, entries 3-6). Changing the nucleophile to N-Boc hydroxylamine or N-hydroxypiperidine, presumably more nucleophilic species, was also unproductive with numerous types of Lewis acid $\left[\mathrm{LiBr}, \mathrm{InCl}_{3}, \mathrm{ZrCl}_{4}\right.$, $\mathrm{Cu}(\mathrm{OTf})_{2}$, or $\mathrm{Ti}(\mathrm{Oi} \mathrm{Pr})_{4}$; Table 1, entries 7-15]. Finally, we envisaged an alternative two-step procedure based on the intermediate introduction of an oxime under basic conditions as a hydroxylamine precursor, followed by its acid-mediated cleavage to give the expected β-hydroxy O-alkyl hydroxylamine. Oximes are more nucleophilic than hydroxylamines under basic conditions and their high-yield ring-opening of epoxides has been described. ${ }^{11}$ Thus, the group of Soltani Rad recently described the aqueous-mediated ring opening of various epoxides with a range of oximes. ${ }^{11 a}$ Their protocol involved the use of a slight excess of potassium hydroxide (1.3 equiv) to deprotonate the oxime (1 equiv) in a mixture of water-dimethyl sulfoxide (DMSO) (7:3) at room temperature, followed by the addition of an excess of epoxide (1.5 equiv). Similar conditions were evaluated on cyclopentene oxide (3h) but with a slight excess of acetophenone oxime, as it would ultimately represent the least precious component in reactions employing more complex epoxides (Table 1, entry

Table 1 Ring Opening of Cyclopentene Oxide with HydroxylamineDerived Nucleophiles

 3h					
Entry	Nucleophile	LA (cat.) or base	Solvent	Temp $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { Yield } \\ & (\%)^{\mathrm{a}, \mathrm{~b}} \end{aligned}$
1	HONHFmoc	$\mathrm{K}_{2} \mathrm{CO}_{3}$	EtOH	60	NR
2	HONHFmoc	$\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	NR
3		$\mathrm{Sc}(\mathrm{OTf})_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	NR
4		$\mathrm{Sc}(\mathrm{OTf})_{3}$	MeCN	r.t.	NR
5		$\mathrm{Sc}(\mathrm{OTf})_{3}$	THF	r.t.	NR
6		$\mathrm{Yb}(\mathrm{OTf})_{3}$	THF	r.t.	NR
7	HONHBoc	$\mathrm{Sc}(\mathrm{OTf})_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	NR
8		$\mathrm{Yb}(\mathrm{OTf})_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	NR
9		$\mathrm{Sc}(\mathrm{OTf})_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	NR
10		$\mathrm{Yb}(\mathrm{OTf})_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	NR
11		LiBr	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	NR
12		InCl 3	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	NR
13		$\mathrm{Ti}(\mathrm{OiPr})_{4}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	NR
14		$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	NR
15		ZrCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	r.t.	NR
16		KOH	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}- \\ & \mathrm{DMSO}^{\mathrm{c}} \end{aligned}$	r.t.	trace
17		KOH	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}- \\ & \mathrm{DMSO}^{\mathrm{c}} \end{aligned}$	90	23
18		KOH	DMF	r.t.	trace
19		KOH	DMF	90	73

${ }^{\text {a }}$ Isolated yield.
${ }^{\mathrm{b}} \mathrm{NR}=$ no reaction.
${ }^{\mathrm{c}}$ In a 7:3 ratio.
16). Surprisingly, the solvent system used by Soltani Rad et al. was not efficient for our model epoxide and only traces of the expected compound were obtained. Heating to $90^{\circ} \mathrm{C}$ led to formation of the desired oxime $\mathbf{4 h}$ in low yield (23%; Table 1, entry 17). Switching from DMSO to N, N-dimethylformamide (DMF) did not increase the yield at room temperature (Table 1, entry 18) but compound $\mathbf{4 h}$ was obtained in a good yield at $90^{\circ} \mathrm{C}(73 \%$; Table 1, entry 19).

With conditions established for the ring-opening of cyclopentene oxide by acetophenone oxime, we next focused
on the cleavage of the oxime functionality to liberate the O-alkyl hydroxylamine. After many unfruitful assays under acidic conditions, we found that 2,4-dinitrophenylhydrazine was efficient for the liberation of O-alkyl hydroxylamine from oximes with generation of 2,4-dinitrophenylhydrazone as a by-product. We also established that protection of the hydroxylamine product in situ was possible by reaction with $\mathrm{FmocCl}, \mathrm{CbzCl}$, or AllocCl , which provides a means to isolate the target compound in the form of a carbamate, cleavable under basic, acidic, or metal-catalyzed conditions. To evaluate the scope of the process, we tested its versatility towards various epoxides 3, so as to obtain the corresponding β-hydroxy O-alkyl hydroxylamines 5. The results, presented in Table 2, show regioselective ring-opening of terminal epoxides with preferential attack at the less hindered position (Table 2, entries 1-6). The presence of a double bond or an aromatic core did not affect the yield (Table 2, entries 1 and 3). The PMP-protected glycidol epoxide furnished α-hydroxyoxime 4 a in 83% yield. Hydrolysis of the oxime furnished free hydroxylamine $\mathbf{5 a}$ in 77% yield or $\mathbf{6 a - 8 a}$ in a range of $80-89 \%$, depending on the carbamate used (Table 2, entry 1). A free hydroxyl group was found to be compatible with the ring opening but decreased the yield to 46% (Table 2 , entry 4). In the case of epichlorohydrin (Table 2, entry 5), the epoxide, which is known to be the more reactive site, ${ }^{12}$ was opened smoothly to afford $\mathbf{4 e}$ with acetophenone oxime in 73% yield. Unfortunately, the presence of an epoxide was not compatible with 2,4-dinitrophenylhydrazine-mediated cleavage of the oxime (Table 2 , entry 5). Thus, epoxide $4 e$ was opened with a second equivalent of acetophenone oxime to give $4 f$ in good yield (Table 2, entry 6). Highly functionalized Cerny's epoxide $\mathbf{3 j}$ was converted into its β-hydroxy O-alkyl hydroxylamine derivative $\mathbf{5 j}$ in 76% over two steps (Table 2, entry 9). Protection as carbamates in situ was also successful, and $\mathbf{5 - 8 j}$ were obtained in high yields (Table 2, entry 9). Finally, the cyclopentene-derived epoxide 1a was opened with acetophenone oxime at $90^{\circ} \mathrm{C}$ and converted into the Fmoc-protected targeted skeleton 2a in good yield (73\%) over two steps (Table 2, entry 10).
In conclusion, we have established a convenient two-step procedure for the synthesis of β-hydroxy O-alkyl hydroxylamines by oxime-mediated regioselective opening of epoxides under basic conditions, followed by cleavage of the resulting oxime by 2,4-dinitrophenylhydrazine. We showed that various protecting groups could be introduced for protection of the highly polar resulting O-alkyl hydroxylamines in situ. The scope of the reaction revealed its good tolerance for alkenes, halogens, and alcohols.

Reactions were performed under an atmosphere of argon and monitored by thin-layer chromatography on Merck silica gel plates (60 F_{254} aluminum sheets). All separations were carried out under flashchromatographic conditions on silica gel (Redi Sep prepacked column, 230-400 mesh) with the use of a CombiFlash Companion. N, N-Dimethylformamide (DMF) was purified by filtration through an activated alumina column under argon. MeOH was purchased from Acros Organics at the highest commercial quality and used without further purification. Reagent-grade chemicals were ob-

Table 2 Scope of the Two-Step Procedure; Synthesis of β-Hydroxy O-Alkyl Hydroxylamines

Entry Epoxide 3	O-Alkyl oxime 4	Product	$\begin{aligned} & \text { Yield } \\ & (\%)^{\mathrm{a}} \end{aligned}$	O-Alkyl hydroxylamine 5-8	R^{3}	Product	$\begin{aligned} & \text { Yield } \\ & (\%)^{\mathrm{a}} \end{aligned}$
1		4a ${ }^{\text {b }}$	83		H Fmoc Cbz Alloc	$\begin{aligned} & 5 \mathrm{a} \\ & \mathbf{6 a} \\ & 7 \mathrm{a} \\ & \mathbf{8 a} \end{aligned}$	$\begin{aligned} & 77 \\ & 81^{\text {c }} \\ & 80 \\ & 89 \end{aligned}$

2

4b $\quad 74$

$4 c \quad 84^{\text {d }}$

Fmoc 6c 69

4

4d $\quad 46^{\text {e }}$

Fmoc 6d 93

5

$4 \mathbf{7 3}$

6

4f $\quad 86$

H	$\mathbf{5 e}$	$0^{\text {f }}$
Fmoc	$\mathbf{6 e}$	$0^{\text {f }}$
Fmoc	$\mathbf{6 f}$	$-^{\text {h }}$
Alloc	$\mathbf{8 f}$	61
H	$\mathbf{5 h}$	-g
Fmoc	$\mathbf{6 h}$	99

8

$4 i$
89^{e}

| Fmoc | $\mathbf{6 i}$ | $-^{\text {h }}$ |
| :--- | :--- | :--- | :--- |
| Alloc | $\mathbf{8 i}$ | 81 |

9

4j

H	$\mathbf{5 j}$	76
Fmoc	$\mathbf{6 j}$	76
Cbz	$\mathbf{7 j}$	88
Alloc	$\mathbf{8 j}$	74

4k
84^{e}

${ }^{\text {a }}$ Isolated yield.
${ }^{\mathrm{b}}$ PMP = p-methoxyphenyl.
${ }^{\text {c }}$ The yield dropped to 54% when only 2 equiv of $\mathrm{H}_{2} \mathrm{SO}_{4}$ were used.
${ }^{\mathrm{d}}$ Reaction performed at $50^{\circ} \mathrm{C}$.
${ }^{\mathrm{e}}$ Reaction performed at $90^{\circ} \mathrm{C}$
${ }^{\mathrm{f}}$ Formation of the expected product was not observed.
${ }^{\mathrm{g}}$ Formation of the expected product was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis, but its isolation was troublesome.
${ }^{\mathrm{h}}$ The expected product was obtained as an inseparable mixture with Fmoc-protected 2,4-dinitrophenylhydrazine.
tained from Sigma-Aldrich or Acros Organics chemical companies and were used as received. Optical rotations were measured with an Anton Paar MCP 300 polarimeter at 589 nm and are expressed in deg $\cdot \mathrm{cm}^{3} \cdot \mathrm{~g}^{-1} \cdot \mathrm{dm}^{-1}$ and c is expressed in $\mathrm{g} / 100 \mathrm{~cm}^{3}$. IR spectra were recorded with a Perkin-Elmer FT-IR system using a diamond window Dura SamplIR II and the data are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. ${ }^{1} \mathrm{H}\left(500\right.$ or 300 MHz) and ${ }^{13} \mathrm{C}(125$ or 75 MHz$)$ NMR spectra were recorded with Brüker Avance spectrometers. Chemical shifts are given in $\mathrm{ppm}(\delta)$ and are referenced to the internal solvent signal or to TMS used as an internal standard. High-resolution mass spectra (HRMS) were recorded with a Micromass LCT Premier XE instrument (Waters) and were determined by electrospray ionization (ESI).

Epoxide Opening; General Procedure A

Acetophenone oxime (1.5 equiv) and KOH (3 equiv) were dissolved in anhydrous DMF (0.15 M in epoxide) and the solution was stirred at r.t. for 30 min . A solution of epoxide (1 equiv) in anhydrous DMF (0.3 M in epoxide) was then added and the mixture was stirred at the indicated temperature for 16 h . After addition of $\mathrm{H}_{2} \mathrm{O}$, aq $\mathrm{HCl}(1 \mathrm{M})$ was added dropwise until $\mathrm{pH} 1-2$. The mixture was extracted with MTBE $(3 \times)$ and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by column chromatography with the indicated eluent afforded β-hydroxy oxime O-ethers.

(\boldsymbol{E})-Acetophenone \boldsymbol{O}-[2-Hydroxy-3-(4-methoxyphenoxy)propyl]oxime (4a)

The reaction was carried out according to General Procedure A with glycidyl 4-methoxyphenyl ether ($90 \mathrm{mg}, 0.5 \mathrm{mmol}$), acetophenone oxime ($101 \mathrm{mg}, 0.75 \mathrm{mmol}$) and $\mathrm{KOH}(84 \mathrm{mg}, 1.5 \mathrm{mmol})$ in DMF (5 mL). The mixture was stirred at r.t. for 16 h and worked up as described. The crude product was purified by column chromatography (heptane-EtOAc, 95:5 $\rightarrow 9: 1$) to give $\mathbf{4 a}$.

Yield: $131 \mathrm{mg}\left(0.415 \mathrm{mmol}, 83 \%\right.$); colorless oil; $R_{f}=0.19$ (hep-tane-EtOAc, 4:1).

IR (neat): 3461, 2953, 2926, 1739, 1507, 1228, 1113, 1034, 826, 766, 742, $696 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.25(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.75(\mathrm{~s}, 3 \mathrm{H}$, OMe), 3.98-4.06 (m, $2 \mathrm{H}, \mathrm{H}-3$), 4.31-4.44 (m, $3 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-2$), 6.82 $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.87(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.32-7.39$ (m, 3 H, Ph-H), 7.58-7.64 (m, 2 H, Ph-H).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.7\left(\mathrm{CH}_{3}\right), 55.6\left(\mathrm{OCH}_{3}\right), 69.5(\mathrm{C}$ 3), $70.0(\mathrm{C}-2), 74.6(\mathrm{C}-1), 114.6(\mathrm{CH}-\mathrm{Ar}), 115.5(\mathrm{CH}-\mathrm{Ar}), 126.0$ $(\mathrm{CH}-\mathrm{Ph}), 128.4(\mathrm{CH}-\mathrm{Ph}), 129.3(\mathrm{CH}-\mathrm{Ph}), 136.0\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Ph}\right), 152.7\left(\mathrm{C}_{\mathrm{q}}-\right.$ O), $154.0\left(\mathrm{C}_{\mathrm{q}}=\mathrm{N}\right), 155.8\left(\mathrm{C}_{\mathrm{q}}-\mathrm{OMe}\right)$.

HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4}: 316.1549$; found: 316.1556 .

(\boldsymbol{E})-Acetophenone \boldsymbol{O}-(2-Hydroxyoctyl) Oxime (4b)

The reaction was carried out according to General Procedure A with 1,2-epoxyoctane ($128 \mathrm{mg}, 1 \mathrm{mmol}$), acetophenone oxime (203 mg , $1.5 \mathrm{mmol})$, and $\mathrm{KOH}(168 \mathrm{mg}, 3 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 16 h and worked up as described. The crude product was purified by preparative HPLC (NW50 column, Merck; heptane-EtOAc, $10: 0 \rightarrow 7: 3$ over $35 \mathrm{~min} ; 100 \mathrm{~mL} / \mathrm{min} ;$ UV detection at 254 nm) to give $\mathbf{4 b}$.
Yield: $97 \mathrm{mg}(0.368 \mathrm{mmol}, 74 \%)$; colorless oil; $R_{f}=0.39$ (heptaneEtOAc, 4:1).

IR (neat): 3411, 2954, 2927, 2857, 1444, 1369, 1313, 1036, 927 , 912, $901,758,691 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.85-0.93$ (m, $3 \mathrm{H}, \mathrm{H}-8$), $1.24-$ $1.56(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H} 3-\mathrm{H} 7), 2.26(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.93$ (br s, $1 \mathrm{H}, \mathrm{OH}$), 3.94-4.04 (m, 1 H, H-2), 4.08 and $4.22\left(\mathrm{ABX}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}, J_{\mathrm{AX}}=\right.$ $\left.1.2 \mathrm{~Hz}, J_{\mathrm{BX}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1\right), 7.33-7.40(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.58-$ 7.66 (m, $2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.7\left(\mathrm{CH}_{3}\right), 14.1(\mathrm{C}-8), 22.6(\mathrm{C}-7)$, 25.4 (C-4 or C-5), 29.3 (C-4 or C-5), 31.8 (C-6), 33.2 (C-3), 71.4 (C-2), $77.9(\mathrm{C}-1), 126.0(\mathrm{CH}-\mathrm{Ph}), 128.4(\mathrm{CH}-\mathrm{Ph}), 129.3(\mathrm{CH}-\mathrm{Ph})$, $136.2\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Ph}\right), 155.6\left(\mathrm{C}_{\mathrm{q}}=\mathrm{N}\right)$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{2}: 264.1964$; found: 264.1965.

(\boldsymbol{E})-Acetophenone \boldsymbol{O}-(2-Hydroxy-2-methylbut-3-en-1-yl) Ox-

 ime (4c)The reaction was carried out according to General Procedure A with 2-methyl-2-vinyloxirane ($84 \mathrm{mg}, 1 \mathrm{mmol}$), acetophenone oxime $(203 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $\mathrm{KOH}(168 \mathrm{mg}, 3 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 16 h and worked up as described. The crude product was purified by preparative HPLC (NW50 column, Merck; heptane-EtOAc, 10:0 $\rightarrow 8: 2$ over 35 min ; $100 \mathrm{~mL} / \mathrm{min}$; UV detection at 254 nm) to give $\mathbf{4 c}$.

Yield: $92 \mathrm{mg}(0.420 \mathrm{mmol}, 84 \%)$; colorless oil; $R_{f}=0.24$ (heptaneMTBE, 4:1).
IR (neat): $3425,2976,2930,2873,1445,1370,1307,1044,994$, 914, $758,691 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.31$ (s, $3 \mathrm{H}, \mathrm{H}-5$), $2.25(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}), 3.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 4.14(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-1), 5.14(\mathrm{dd}, J=1.5$, $10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.37$ (dd, $J=1.5,17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 5.96 (dd, $J=10.7,17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.32-7.39(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.57-7.65$ (m, $2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.8\left(\mathrm{CH}_{3}\right), 72.5(\mathrm{C}-2), 77.2(\mathrm{C}-1)$, 116.3 (C-4), 115.5 (CH-Ar), $126.0(\mathrm{CH}-\mathrm{Ph}), 128.4(\mathrm{CH}-\mathrm{Ph}), 129.4$ $(\mathrm{CH}-\mathrm{Ph}), 136.1\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Ph}\right), 136.4(\mathrm{C}-3), 155.9\left(\mathrm{C}_{\mathrm{q}}=\mathrm{N}\right)$.
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}: 220.1338$; found: 220.1336.

(S,E)-Acetophenone \boldsymbol{O}-(2,3-Dihydroxypropyl) Oxime (4d)

The reaction was carried out according to General Procedure A with (S)-glycidol ($74 \mathrm{mg}, 1 \mathrm{mmol}$), acetophenone oxime ($203 \mathrm{mg}, 1.5$ $\mathrm{mmol})$ and $\mathrm{KOH}(168 \mathrm{mg}, 3 \mathrm{mmol})$ in DMF $(10 \mathrm{~mL})$. The mixture was stirred at $90^{\circ} \mathrm{C}$ for 16 h and worked up as described. The crude product was purified by column chromatography (heptane-EtOAc, $1: 1)$ to give 4d.
Yield: 97 mg ($0.464 \mathrm{mmol}, 46 \%$); pale-yellow oil; $[\alpha]_{\mathrm{D}}{ }^{24}-12.6$ (c $0.89, \mathrm{CHCl}_{3}$); $R_{f}=0.22$ (heptane-EtOAc, 3:7).
IR (neat): 3277, 2927, 2872, 1467, 1441, 1058, 1046, 914, 754, $690 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.24(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.26(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, $2 \times \mathrm{OH}), 3.66$ and $3.74\left(\mathrm{ABX}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}, J_{\mathrm{AX}}=3.9 \mathrm{~Hz}, J_{\mathrm{BX}}=\right.$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3), 4.01-4.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 4.25(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-1), 7.32-7.39$ (m, 3 H, Ph-H), 7.55-7.63 (m, $2 \mathrm{H}, \mathrm{Ph}-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.8\left(\mathrm{CH}_{3}\right), 63.6(\mathrm{C}-3), 71.6(\mathrm{C}-2)$, $74.6(\mathrm{C}-1), 126.0(\mathrm{CH}-\mathrm{Ph}), 128.4(\mathrm{CH}-\mathrm{Ph}), 129.3(\mathrm{CH}-\mathrm{Ph}), 136.0$ $\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Ph}\right), 156.0\left(\mathrm{C}_{\mathrm{q}}=\mathrm{N}\right)$.
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}_{3}: 210.1130$; found: 210.1133 .

(\boldsymbol{E})-Acetophenone \boldsymbol{O}-Oxiran-2-ylmethyl Oxime (4e)

The reaction was carried out according to General Procedure A with epichlorohydrin ($234 \mu \mathrm{~L}, 3 \mathrm{mmol}$), acetophenone oxime ($405 \mathrm{mg}, 3$ $\mathrm{mmol})$ and $\mathrm{KOH}(336 \mathrm{mg}, 6 \mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$. The mixture was stirred at r.t. for 16 h and worked up as described. The crude product was purified by column chromatography (heptane-EtOAc, $4: 1$) to give $\mathbf{4 e}$.
Yield: $420 \mathrm{mg}(2.2 \mathrm{mmol}, 73 \%)$; colorless oil; $R_{f}=0.48$ (heptaneEtOAc, 7:3).

IR (neat): $3056,3001,2926,2876,1497,1445,1370,1311,1038$, $992,909,885,759,693 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.28(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.69(\mathrm{dd}, J=$ $2.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 2.87 (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $3.30-3.37$ (m, $1 \mathrm{H}, \mathrm{H}-2), 4.16$ and $4.42\left(\mathrm{ABX}, J_{\mathrm{AB}}=12.2 \mathrm{~Hz}, J_{\mathrm{AX}}=3.4 \mathrm{~Hz}, J_{\mathrm{BX}}=\right.$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1), 7.33-7.41$ (m, 3 H, Ph-H), 7.61-7.69 (m, 2 H, Ph-H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.7\left(\mathrm{CH}_{3}\right), 44.8(\mathrm{C}-3), 50.2(\mathrm{C}-2)$, $74.8(\mathrm{C}-1), 126.0(\mathrm{CH}-\mathrm{Ph}), 128.3(\mathrm{CH}-\mathrm{Ph}), 129.1(\mathrm{CH}-\mathrm{Ph}), 136.3$ $\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Ph}\right), 155.3\left(\mathrm{C}_{\mathrm{q}}=\mathrm{N}\right)$.
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}: 192.1025$; found: 192.1034 .
($\left.1 E, 1^{\prime} E\right)$-Acetophenone O-(2-Hydroxy-3-\{[(E)-(1-phenylethylidene)aminoloxy\}propyl) Oxime (4f)
The reaction was carried out according to General Procedure A with $4 \mathrm{e}(100 \mathrm{mg}, 0.52 \mathrm{mmol})$, acetophenone oxime $(106.1 \mathrm{mg}, 0.78$ $\mathrm{mmol})$ and $\mathrm{KOH}(88 \mathrm{mg}, 1.6 \mathrm{mmol})$ in DMF (5 mL). The mixture was stirred at r.t. for 16 h and worked up as described. The crude product was purified by column chromatography (heptane-EtOAc, 7:3) to give $\mathbf{4 f}$.
Yield: $147.5 \mathrm{mg}(0.45 \mathrm{mmol}, 86 \%)$; colorless oil; $R_{f}=0.63$ (hep-tane-EtOAc, 3:2).
IR (neat): 3423, 3059, 2931, 2877, 1497, 1444, 1369, 1311, 1042, 998, $935,919,889,759 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.28(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}), 4.26-4.42(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-2), 7.32-7.41(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.59-7.69(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}-$ H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.8\left(\mathrm{CH}_{3}\right), 70.8(\mathrm{C}-2), 74.8(\mathrm{C}-1)$, $126.0(\mathrm{CH}-\mathrm{Ph}), 128.4(\mathrm{CH}-\mathrm{Ph}), 129.3(\mathrm{CH}-\mathrm{Ph}), 136.2\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Ph}\right)$, $155.6\left(\mathrm{C}_{\mathrm{q}}=\mathrm{N}\right)$.
HRMS (ESI-TOF): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}: 327.1709$; found: 327.1714 .

(E)-Acetophenone \boldsymbol{O}-[(trans)-2-Hydroxycyclopentyl] Oxime

 (4h)The reaction was carried out according to General Procedure A with cyclopentene oxide ($50 \mathrm{mg}, 0.6 \mathrm{mmol}$), acetophenone oxime (121 $\mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{KOH}(100 \mathrm{mg}, 1.8 \mathrm{mmol})$ in DMF $(6 \mathrm{~mL})$. The mixture was stirred at $90^{\circ} \mathrm{C}$ for 16 h and worked up as described. The crude product was purified by column chromatography (hep-tane-EtOAc, 80:20) to give $\mathbf{4 h}$.
Yield: $96 \mathrm{mg}(0.44 \mathrm{mmol}, 73 \%)$; colorless oil; $R_{f}=0.31$ (heptaneEtOAc, 4:1).
IR (neat): 3358, 3056, 2961, 1496, 1445, 1369, 1316, 1083, 1037, 995, $973,914,760,693 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.56-1.83$ (m, $4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-$ 5), 1.93-2.18 (m, 2 H, H-3, H-5), 2.21 (s, $3 \mathrm{H}, \mathrm{Me}$), 2.87 (br s, 1 H , $\mathrm{OH}), 4.28(\mathrm{td}, J=4.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.53(\mathrm{ddd}, J=3.8,4.8$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 7.31-7.38(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.57-7.65(\mathrm{~m}, 2 \mathrm{H}$, Ph-H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.7\left(\mathrm{CH}_{3}\right), 20.8(\mathrm{C}-4), 28.5(\mathrm{C}-5)$, 31.6 (C-3), $77.8(\mathrm{C}-2), 89.7(\mathrm{C}-1), 126.0(\mathrm{CH}-\mathrm{Ph}), 128.3(\mathrm{CH}-\mathrm{Ph})$, $129.1(\mathrm{CH}-\mathrm{Ph}), 136.5\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Ph}\right), 155.1\left(\mathrm{C}_{\mathrm{q}}=\mathrm{N}\right)$.
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}: 220.1338$; found: 220.1339.
(E)-Acetophenone \boldsymbol{O} - $[($ trans $)$-2-Hydroxycyclohexyl $]$ Oxime (4i) The reaction was carried out according to General Procedure A with cyclohexene oxide ($46.1 \mathrm{mg}, 0.5 \mathrm{mmol}$), acetophenone oxime ($101.3 \mathrm{mg}, 0.75 \mathrm{mmol}$) and KOH ($84 \mathrm{mg}, 1.5 \mathrm{mmol}$) in DMF (5 mL). The mixture was stirred at r.t. for 16 h and worked up as described. The crude product was purified by preparative HPLC (Eurospher 100-5 Si column, Knauer; $250 \times 20 \mathrm{~mm}$; heptaneEtOAc, 10:0 $\rightarrow 7: 3$ over $40 \mathrm{~min} ; 12 \mathrm{~mL} / \mathrm{min}$; UV detection at 254 nm) to give $\mathbf{4 i}$.

Yield: $104.4 \mathrm{mg}(0.45 \mathrm{mmol}, 89 \%)$; colorless oil; $R_{f}=0.32$ (hep-tane-EtOAc, 7:3).
IR (neat): $3429,2933,2862,1497,1447,1371,1074,1039,1007$, 998, 936, 920, 760, $693 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.22-1.43(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-$ 5, H-6), 1.68-1.80 (m, 2 H, H-3, H-4), 2.02-2.15 (m, 2 H, H-6, H5), $2.27(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.69-3.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.97-4.07(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-1), 7.32-7.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.58-7.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.7\left(\mathrm{CH}_{3}\right), 23.7(\mathrm{C}-3$ or $\mathrm{C}-4), 24.2$ (C-3 or C-4), 29.6 (C-5), 32.6 (C-6), 74.6 (C-2), 85.8 (C-1), 126.0 $(\mathrm{CH}-\mathrm{Ph}), 128.4(\mathrm{CH}-\mathrm{Ph}), 129.2(\mathrm{CH}-\mathrm{Ph}), 136.2\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Ph}\right), 155.2$ $\left(\mathrm{C}_{\mathrm{q}}=\mathrm{N}\right)$.
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}:$ 234.1494; found: 234.1487.

Compound 4j

The reaction was carried out according to General Procedure A with NAP-protected Cerny's epoxide ${ }^{6 \mathrm{a}}(142 \mathrm{mg}, 0.5 \mathrm{mmol})$, acetophenone oxime ($101 \mathrm{mg}, 0.75 \mathrm{mmol}$) and $\mathrm{KOH}(84 \mathrm{mg}, 1.5 \mathrm{mmol})$ in DMF (5 mL). The mixture was stirred at $90^{\circ} \mathrm{C}$ for 16 h and worked up as described. The crude product was purified by column chromatography (heptane-EtOAc, $8: 2 \rightarrow 7: 3$) to give $\mathbf{4 j}$.
Yield: $187 \mathrm{mg}(0.446 \mathrm{mmol}, 89 \%)$; pale-yellow foam; $[\alpha]_{\mathrm{D}}{ }^{24}-7.6$ (c $1.09, \mathrm{CHCl}_{3}$); $R_{f}=0.47$ (heptane-EtOAc, 1:1).
IR (neat): $3411,2925,2905,1445,1359,1318,1304,1039,972$, 918, $905,886,760,690 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.23(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, OH), 3.43 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$), 3.64 (dd, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.84 (d, $J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.07-4.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4), 4.60(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 4.77$ and $4.84\left(\mathrm{AB}, J_{\mathrm{AB}}=12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NAP}\right), 5.63$ (s, 1 H, H-1), 7.28-7.36 (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.39-7.51 (m, $3 \mathrm{H}, \mathrm{ArH}$), $7.56-7.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.73-7.82(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=13.0\left(\mathrm{CH}_{3}\right), 66.5(\mathrm{C}-6), 71.0(\mathrm{C}-3)$, $71.8\left(\mathrm{CH}_{2}-\mathrm{NAP}\right), 75.6(\mathrm{C}-5), 79.9(\mathrm{C}-2), 83.3(\mathrm{C}-4), 100.6(\mathrm{C}-1)$, 125.7 (CH-Ar), 125.9 (CH-Ar), 126.1 (CH-Ar), 126.1 (CH-Ar), 126.5 ($\mathrm{CH}-\mathrm{Ar}$), 127.6 ($\mathrm{CH}-\mathrm{Ar}$), 127.8 ($\mathrm{CH}-\mathrm{Ar}$), 128.2 (CH-Ar), 128.4 (CH-Ar), 129.4 (CH-Ar), $132.9\left(\mathrm{C}_{\mathrm{q}}-\mathrm{NAP}\right), 133.1\left(\mathrm{C}_{\mathrm{q}}-\mathrm{NAP}\right)$, $135.3\left(\mathrm{C}_{\mathrm{q}}-\mathrm{NAP}\right), 136.0\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Ph}\right), 156.8\left(\mathrm{C}_{\mathrm{q}}=\mathrm{N}\right)$.
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}_{5}$: 442.1630; found: 442.1631 .
(1R,2S,3R,5S)-2-[(Benzyloxy)methyl]-3-(naphthalen-2-yl-methoxy)-6-oxabicyclo[3.1.0]hexane (1a)
To a solution of $(1 R, 2 S, 3 R, 5 S)-2-[($ benzyloxy $)$ methyl $]$-6-oxabicyc-lo[3.1.0]hexan-3-ol ${ }^{6 a}$ ($205 \mathrm{mg}, 0.931 \mathrm{mmol}, 1$ equiv) in anhydrous DMF $(10 \mathrm{~mL})$ were added $\mathrm{NaH}(60 \%$ in mineral oil, $67 \mathrm{mg}, 1.68$ $\mathrm{mmol}, 1.8$ equiv) and 2-bromomethylnaphthalene ($309 \mathrm{mg}, 1.40$ mmol, 1.5 equiv) and the mixture was stirred at r.t. for 4 h . After addition of crushed ice, the mixture was extracted with MTBE (3×10 mL). The combined organic layers were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by column chromatography (heptane-EtOAc, 7:3) gave 1a.
Yield: $322 \mathrm{mg}(0.893 \mathrm{mmol}, 96 \%)$; pale-yellow oil; $[\alpha]_{\mathrm{D}}{ }^{24}-48.0$ (c $0.89, \mathrm{CHCl}_{3}$); $R_{f}=0.43$ (heptane-EtOAc, 3:2).
IR (neat): 2925, 2856, 1362, 1121, 1084, 1027, 839, 815, 737, $697 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.04$ (ddd, $J=0.9,7.6,15.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 2.18(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 2.65(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2), 3.37$ and $3.40\left(\mathrm{ABX}, J_{\mathrm{AB}}=9.5 \mathrm{~Hz}, J_{\mathrm{AX}}=6.1 \mathrm{~Hz}, J_{\mathrm{BX}}=6.1 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{OBn}\right), 3.46(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-$ 3), $3.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.61$ and $4.68\left(\mathrm{AB}, J_{\mathrm{AB}}=12.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NAP}\right), 7.20-7.33(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$, 7.40-7.50 (m, 3 H, ArH), 7.69-7.84 (m, $4 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=34.8(\mathrm{C}-5), 47.4(\mathrm{C}-2), 57.9(\mathrm{C}-3)$, $59.7(\mathrm{C}-4), 69.2\left(\mathrm{CH}_{2}-\mathrm{OBn}\right), 70.9\left(\mathrm{CH}_{2}-\mathrm{NAP}\right), 73.2\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 80.9$
(C-1), 125.7 (CH-Ar), 125.9 (CH-Ar), 126.0 (CH-Ar), 126.4 (CHAr), 127.4 (CH-Ar), 127.6 (CH-Ar), 127.8 (CH-Ar), 128.0 (CHAr), 128.3 (CH-Ar), 132.9 (C $\mathrm{C}_{\mathrm{q}}-\mathrm{NAP}$), 133.2 ($\left.\mathrm{C}_{\mathrm{q}}-\mathrm{NAP}\right), 135.9$ (C $\mathrm{C}_{\mathrm{q}}-$ NAP), 138.0 ($\left.\mathrm{C}_{\mathrm{q}}-\mathrm{Bn}\right)$.
HRMS (ESI-TOF): $m / z\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}_{3}$: 378.2069; found: 378.2070.
(E)-Acetophenone \boldsymbol{O}-\{(1R,2R,3R,4R)-3-[(Benzyloxy)methyl]-2-hydroxy-4-(naphthalen-2-ylmethoxy)cyclopentyl\} Oxime (4 k) The reaction was carried out according to General Procedure A with 1a ($23 \mathrm{mg}, 0.064 \mathrm{mmol}$), acetophenone oxime ($13 \mathrm{mg}, 0.096 \mathrm{mmol}$) and $\mathrm{KOH}(11 \mathrm{mg}, 0.192 \mathrm{mmol})$ in DMF $(850 \mu \mathrm{~L})$. The mixture was stirred at $90^{\circ} \mathrm{C}$ for 16 h and worked up as described. The crude product was purified by column chromatography (heptane-MTBE, 4:1) to give $\mathbf{4 k}$.
Yield: $27 \mathrm{mg}(0.054 \mathrm{mmol}, 84 \%)$; colorless oil; $[\alpha]_{\mathrm{D}}{ }^{24}+3.6$ (c 0.72 , CHCl_{3}); $R_{f}=0.41$ (heptane-MTBE, 1:1).
IR (neat): 3441, 3058, 3027, 2924, 2858, 1366, 1065, 1028, 995, $913,855,815,756,736,693 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.03-2.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.20(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{Me}), 2.23-2.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-5), 3.63$ and 3.67 (ABX, $J_{\mathrm{AB}}=$ $\left.9.3 \mathrm{~Hz}, J_{\mathrm{AX}}=5.3 \mathrm{~Hz}, J_{\mathrm{BX}}=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{OBn}\right), 3.95-4.03(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-1$), 4.11 (dd, $J=6.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.49 and 4.53 (AB, $\left.J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.62$ and $4.70\left(\mathrm{AB}, J_{\mathrm{AB}}=12.1 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{CH}_{2}$-NAP), 4.71-4.85 (m, 1 H, H-4), 7.20-7.50 (m, 11 H , ArH), 7.55-7.64 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.72-7.86 (m, $4 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.8\left(\mathrm{CH}_{3}\right), 34.7(\mathrm{C}-5), 51.7(\mathrm{C}-2)$, $69.4\left(\mathrm{CH}_{2}-\mathrm{OBn}\right), 71.2\left(\mathrm{CH}_{2}-\mathrm{NAP}\right), 73.2\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 77.1(\mathrm{C}-1), 78.1$ (C-3), 86.9 (C-4), 125.8 (CH-Ar), 126.0 (CH-Ar), 126.0 (CH-Ar), 126.3 (CH-Ar), 127.5 (CH-Ar), 127.6 (CH-Ar), 127.7 (CH-Ar), 127.9 (CH-Ar), 128.1 (CH-Ar), 128.3 (CH-Ar), 128.4 (CH-Ar), 128.4 (CH-Ar), 129.2 (CH-Ar), 132.9 (C C_{q}-NAP), 133.3 (C C_{q}-NAP), $135.9\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Ph}\right)$, $136.4\left(\mathrm{C}_{\mathrm{q}}-\mathrm{NAP}\right), 138.3\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Bn}\right)$, $155.4\left(\mathrm{C}_{\mathrm{q}}=\mathrm{N}\right)$.
HRMS (ESI-TOF): m/z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NNaO}_{4}$: 518.2307; found: 518.2313 .

Synthesis of N-Protected \boldsymbol{O}-Alkyl Hydroxylamine; General Procedure B

To a solution of β-hydroxy oxime O-ether (1 equiv) in anhydrous $\mathrm{MeOH}(0.13 \mathrm{M})$ were added $\mathrm{H}_{2} \mathrm{SO}_{4}$ (10 equiv) and 2,4-dinitrophenylhydrazine (2 equiv) and the mixture was stirred at r.t. for 16 h. After dilution with MeOH ($4 \times$ initial volume), powdered NaHCO_{3} (20 equiv) was added slowly at $0^{\circ} \mathrm{C}$, followed by protecting reagent (5 equiv). The reaction mixture was stirred for 3 h at r.t. and diluted with $\mathrm{EtOAc}(2 \times$ volume of MeOH$)$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(\times 2)$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography with the indicated eluent gave the expected N -protected β-hydroxy O-alkyl hydroxylamine.

1-(Aminooxy)-3-(4-methoxyphenoxy)propan-2-ol (5a)

To a solution of $\mathbf{4 a}$ ($79 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv) in anhydrous $\mathrm{MeOH}(2 \mathrm{~mL})$ were added $\mathrm{H}_{2} \mathrm{SO}_{4}$ ($135 \mu \mathrm{~L}, 2.5 \mathrm{mmol}, 10$ equiv) and 2,4-dinitrophenylhydrazine ($99 \mathrm{mg}, 0.5 \mathrm{mmol}, 2$ equiv) and the mixture was stirred at r.t. for 16 h . Powdered $\mathrm{NaHCO}_{3}(420 \mathrm{mg}, 5$ $\mathrm{mmol}, 20$ equiv) was then added slowly and the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$ and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography (heptane-EtOAc, $1: 1 \rightarrow 3: 7$) gave 5a.
Yield: 41 mg ($0.192 \mathrm{mmol}, 77 \%$); pale-yellow amorphous solid; $R_{f}=0.10$ (heptane-EtOAc, 1:4).
IR (neat): $3301,3249,2935,1513,1240,1046,1033,825 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.76$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.83 and 3.90 $\left(\mathrm{ABX}, J_{\mathrm{AB}}=11.7 \mathrm{~Hz}, J_{\mathrm{AX}}=3.1 \mathrm{~Hz}, J_{\mathrm{BX}}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1\right), 3.96$
(d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3), 4.22-4.30$ (m, 1 H, H-2), 6.79-6.89 (m, 4 H, ArH).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=55.7\left(\mathrm{OCH}_{3}\right), 69.5(\mathrm{C}-3), 70.0(\mathrm{C}-$ 2), $75.8(\mathrm{C}-1), 114.6(\mathrm{CH}-\mathrm{Ar}), 115.5(\mathrm{CH}-\mathrm{Ar}), 152.7\left(\mathrm{C}_{\mathrm{q}}-\mathrm{O}\right), 154.0$ (C_{q}-OMe).
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{4}: 214.1079$; found: 214.1076.

(9H-Fluoren-9-yl)methyl 2-Hydroxy-3-(4-methoxyphenoxy)propoxycarbamate (6a)

The reaction was carried out according to General Procedure B with 4a ($79 \mathrm{mg}, 0.25 \mathrm{mmol}$), 2,4-dinitrophenylhydrazine ($99 \mathrm{mg}, 0.5$ mmol), $\mathrm{H}_{2} \mathrm{SO}_{4}(135 \mu \mathrm{~L}, 2.5 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$, and then with $\mathrm{NaHCO}_{3}(420 \mathrm{mg}, 5 \mathrm{mmol})$ and $\mathrm{FmocCl}(323 \mathrm{mg}, 1.25 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$. The mixture was worked up as described and the crude product was purified by column chromatography (heptaneEtOAc, $8: 2 \rightarrow 7: 3$) to give $\mathbf{6 a}$.

Yield: 88 mg ($0.202 \mathrm{mmol}, 81 \%$); pale-yellow amorphous solid; $R_{f}=0.22$ (heptane-EtOAc, 3:2).
IR (neat): $3238,1707,1508,1269,1230,1124,1107,1042,822$, $755,737 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.76(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.91-4.07(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3), 4.16-4.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 4.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}-\mathrm{Fmoc}), 4.52$ and $4.56\left(\mathrm{ABX}, J_{\mathrm{AB}}=10.7 \mathrm{~Hz}, J_{\mathrm{AX}}=6.7 \mathrm{~Hz}, J_{\mathrm{BX}}=\right.$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$-Fmoc), $6.79-6.87$ (m, $\left.4 \mathrm{H}, \mathrm{ArH}\right), 7.31$ (t, $J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.56(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.76(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=47.0(\mathrm{CH}-\mathrm{Fmoc}), 55.7\left(\mathrm{OCH}_{3}\right)$, $67.5(\mathrm{C}-2), 67.7\left(\mathrm{CH}_{2}-\mathrm{Fmoc}\right), 69.1(\mathrm{C}-3), 78.9(\mathrm{C}-1), 114.7(\mathrm{CH}-$ $\mathrm{Ar}), 115.5$ ($\mathrm{CH}-\mathrm{Ar}$), 120.1 (CH-Ar), 124.9 (CH-Ar), 124.9 (CH$\mathrm{Ar}), 127.2$ ($\mathrm{CH}-\mathrm{Ar}$), 127.9 ($\mathrm{CH}-\mathrm{Ar}$), $141.3\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Fmoc}\right), 143.2\left(\mathrm{C}_{\mathrm{q}}-\right.$ Fmoc), $143.3\left(\mathrm{C}_{\mathrm{q}}\right.$-Fmoc), $152.6\left(\mathrm{C}_{\mathrm{q}}-\mathrm{O}\right), 154.1\left(\mathrm{C}_{\mathrm{q}}-\mathrm{OMe}\right), 158.6$ ($\mathrm{C}=\mathrm{O}$).
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}_{6}$: 458.1580; found: 458.1573.

Benzyl 2-Hydroxy-3-(4-methoxyphenoxy)propoxycarbamate

 (7a)The reaction was carried out according to General Procedure B with $4 \mathbf{a}(79 \mathrm{mg}, 0.25 \mathrm{mmol})$, 2,4-dinitrophenylhydrazine $(99 \mathrm{mg}, 0.5$ mmol $), \mathrm{H}_{2} \mathrm{SO}_{4}(135 \mu \mathrm{~L}, 2.5 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$, and then with $\mathrm{NaHCO}_{3}(420 \mathrm{mg}, 5 \mathrm{mmol})$ and $\mathrm{CbzCl}(188 \mu \mathrm{~L}, 1.25 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$. The mixture was worked up as described and the crude product was purified by column chromatography (heptaneEtOAc, $8: 2 \rightarrow 7: 3$) to give $7 \mathbf{7 a}$.
Yield: $69 \mathrm{mg}(0.199 \mathrm{mmol}, 80 \%)$; yellow amorphous solid; $R_{f}=$ 0.24 (heptane-EtOAc, 3:2).

IR (neat): 3406, 3160, 2954, 1724, 1506, 1266, 1232, 1129, 1109, 1041, 823, 739, $696 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.76(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.92-4.12(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3), 4.20-4.29$ (m, $1 \mathrm{H}, \mathrm{H}-2), 5.19$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$ - Bn), 6.78-6.87 (m, 4 H, ArH), 7.33-7.40 (m, 5H, H-Bn), 7.63 (s, 1 H , $\mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=55.7\left(\mathrm{OCH}_{3}\right), 67.5(\mathrm{C}-2), 68.1$ $\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 69.1(\mathrm{C}-3), 79.0(\mathrm{C}-1), 114.7(\mathrm{CH}-\mathrm{Ar}), 115.5(\mathrm{CH}-\mathrm{Ar})$, $128.4(\mathrm{CH}-\mathrm{Ar}), 128.7(\mathrm{CH}-\mathrm{Ar}), 135.1\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Bn}\right), 152.6\left(\mathrm{C}_{\mathrm{q}}-\mathrm{O}\right), 154.1$ $\left(\mathrm{C}_{\mathrm{q}}-\mathrm{OMe}\right), 158.7(\mathrm{C}=\mathrm{O})$.
HRMS (ESI-TOF): $m / z[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{6}$: 346.1291; found: 346.1306.

Allyl 2-Hydroxy-3-(4-methoxyphenoxy)propoxycarbamate (8a) The reaction was carried out according to General Procedure B with $4 \mathbf{a}(79 \mathrm{mg}, 0.25 \mathrm{mmol}), 2,4$-dinitrophenylhydrazine ($99 \mathrm{mg}, 0.5$ $\mathrm{mmol}), \mathrm{H}_{2} \mathrm{SO}_{4}(135 \mu \mathrm{~L}, 2.5 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$, and then with $\mathrm{NaHCO}_{3}(420 \mathrm{mg}, 5 \mathrm{mmol})$ and AllocCl $(133 \mu \mathrm{~L}, 1.25 \mathrm{mmol})$ in
$\mathrm{MeOH}(10 \mathrm{~mL})$. The mixture was worked up as described and the crude product was purified by column chromatography (heptaneEtOAc, 8:2 $\rightarrow 7: 3$) to give 8a.
Yield: $66 \mathrm{mg}(0.222 \mathrm{mmol}, 89 \%)$; yellow amorphous solid; $R_{f}=$ 0.18 (heptane-EtOAc, 3:2).

IR (neat): $3351,3177,2933,2913,1708,1507,1267,1220,1104$, 994, 827, $756 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.76(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.92-4.12(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3), 4.21-4.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 4.64(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 4.66\left(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.23-5.38$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.83-5.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 6.78-$ 6.87 (m, $4 \mathrm{H}, \mathrm{ArH}), 7.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=55.7\left(\mathrm{OCH}_{3}\right), 66.8\left(\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 67.5(\mathrm{C}-2), 69.1(\mathrm{C}-3), 78.8(\mathrm{C}-1), 114.6(\mathrm{CH}-\mathrm{Ar}), 115.5$ $(\mathrm{CH}-\mathrm{Ar}), 119.0\left(\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 131.5\left(\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 152.6\left(\mathrm{C}_{\mathrm{q}}-\right.$ O), $154.0\left(\mathrm{C}_{\mathrm{q}}-\mathrm{OMe}\right), 158.5(\mathrm{C}=\mathrm{O})$.

HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NNaO}_{6}$: 320.1110; found: 320.1106 .
(9H-Fluoren-9-yl)methyl (2-Hydroxyoctyl)oxycarbamate (6b) The reaction was carried out according to General Procedure B with 4b ($70 \mathrm{mg}, 0.266 \mathrm{mmol}$), 2,4-dinitrophenylhydrazine (105 mg , $0.532 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{SO}_{4}(143 \mu \mathrm{~L}, 2.66 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$, and then with $\mathrm{NaHCO}_{3}(447 \mathrm{mg}, 5.32 \mathrm{mmol})$ and $\mathrm{FmocCl}(344 \mathrm{mg}$, $1.33 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$. The mixture was worked up as described and the crude product was purified by column chromatography (heptane-EtOAc, $8: 2 \rightarrow 7: 3$) to give $\mathbf{6 b}$.
Yield: $97 \mathrm{mg}\left(0.253 \mathrm{mmol}, 95 \%\right.$); pale-rose crystals; $R_{f}=0.27$ (hep-tane-EtOAc, 7:3).
IR (neat): $3319,3271,2954,2925,2855,1698,1495,1479,1465$, $1447,1268,1127,755,736,725 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.78-0.94(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-8), 1.18-$ 1.54 (m, 10 H, H3-H7), 3.62 (dd, $J=9.8,11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.75$ (br s, $1 \mathrm{H}, \mathrm{OH}$), $3.78-3.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-2), 4.22(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}-\mathrm{Fmoc}), 4.50$ and $4.54\left(\mathrm{ABX}, J_{\mathrm{AB}}=10.5 \mathrm{~Hz}, J_{\mathrm{AX}}=6.4 \mathrm{~Hz}\right.$, $J_{\mathrm{BX}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$-Fmoc), $7.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.40$ ($\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.55(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.67(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}), 7.75(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1$ (C-8), 22.6 (C-7), 25.5 (C-4 or C-5), 29.3 (C-4 or C-5), 31.7 (C-6), 32.1 (C-3), 46.9 (CH-Fmoc), $67.6\left(\mathrm{CH}_{2}\right.$-Fmoc), 68.1 (C-2), $81.8(\mathrm{C}-1), 120.0(\mathrm{CH}-\mathrm{Ar}), 124.9$ ($\mathrm{CH}-\mathrm{Ar}$), 124.9 ($\mathrm{CH}-\mathrm{Ar)}$,127.1 ($\mathrm{CH}-\mathrm{Ar}$), 127.8 ($\mathrm{CH}-\mathrm{Ar}), 141.3$ $\left(\mathrm{C}_{\mathrm{q}}\right.$-Fmoc $), 143.3\left(\mathrm{C}_{\mathrm{q}}\right.$-Fmoc), $143.3\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Fmoc}\right), 158.7(\mathrm{C}=\mathrm{O})$.
HRMS (ESI-TOF): m/z [M + Na] calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NNaO}_{4}$: 406.1994; found: 406.1999.

(9H-Fluoren-9-yl)methyl (2-Hydroxy-2-methylbut-3-en-1yl)oxycarbamate (6c)

The reaction was carried out according to General Procedure B with 4c $(96 \mathrm{mg}, 0.438 \mathrm{mmol})$, 2,4-dinitrophenylhydrazine $(173 \mathrm{mg}$, $0.876 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{SO}_{4}(235 \mu \mathrm{~L}, 4.38 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$, and then with $\mathrm{NaHCO}_{3}(736 \mathrm{mg}, 8.76 \mathrm{mmol})$ and $\mathrm{FmocCl}(567 \mathrm{mg}$, $2.19 \mathrm{mmol})$ in $\mathrm{MeOH}(12 \mathrm{~mL})$. The mixture was worked up as described and the crude product was purified by column chromatography (heptane-EtOAc, 8:2 $\rightarrow 7: 3$) to give a mixture of $\mathbf{6 c}$ and Fmocprotected 2,4-dinitrophenylhydrazine (304 mg) as an orange solid. This mixture was purified by preparative HPLC (NW50 column, Merck; heptane-EtOAc, $10: 0 \rightarrow 6: 4$ over $35 \mathrm{~min} ; 100 \mathrm{~mL} / \mathrm{min} ; \mathrm{UV}$ detection at 254 nm) to give $\mathbf{6 c}$.
Yield: $102 \mathrm{mg}\left(0.301 \mathrm{mmol}, 69 \%\right.$); pale-yellow oil; $R_{f}=0.31$ (hep-tane-EtOAc, 3:2).
IR (neat): $3262,2975,1716,1449,1252,1115,757,737 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-5), 3.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{OH}), 3.77$ and $3.83\left(\mathrm{AB}, J_{\mathrm{AB}}=10.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1\right), 4.21(\mathrm{t}, J=$ 6.6 Hz, 1 H, CH-Fmoc), 4.49 (d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$-Fmoc), 5.12
(d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.36(\mathrm{dd}, J=1.1,17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)$, 5.87 (dd, $J=10.7,17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), 7.39 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.55(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $7.75(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.4(\mathrm{C}-5), 46.9(\mathrm{CH}-\mathrm{Fmoc}), 67.6$ $\left(\mathrm{CH}_{2}-\mathrm{Fmoc}\right), 72.6(\mathrm{C}-2), 84.4(\mathrm{C}-1), 113.8(\mathrm{C}-4), 120.0(\mathrm{CH}-\mathrm{Ar})$, 124.9 (CH-Ar), 127.1 ($\mathrm{CH}-\mathrm{Ar}$), $127.8(\mathrm{CH}-\mathrm{Ar}), 141.3\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Fmoc}\right)$, $141.6(\mathrm{C}-3), 143.3\left(\mathrm{C}_{\mathrm{q}}\right.$-Fmoc $), 143.3\left(\mathrm{C}_{\mathrm{q}}\right.$-Fmoc $), 158.0(\mathrm{C}=\mathrm{O})$.
HRMS (ESI-TOF): m/z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{4}$: 362.1368; found: 362.1371 .

(S)-(9H-Fluoren-9-yl)methyl 2,3-Dihydroxypropoxycarbamate

 (6d)The reaction was carried out according to General Procedure B with 4d ($80 \mathrm{mg}, 0.382 \mathrm{mmol}$), 2,4-dinitrophenylhydrazine (152 mg , $0.765 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{SO}_{4}(205 \mu \mathrm{~L}, 3.82 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$, and then with $\mathrm{NaHCO}_{3}(642 \mathrm{mg}, 7.64 \mathrm{mmol})$ and $\mathrm{FmocCl}(494 \mathrm{mg}$, $1.91 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$. The mixture was worked up as described and the crude product was purified by column chromatography (heptane-EtOAc, $1: 1 \rightarrow 0: 1$) to give $\mathbf{6 d}$.
Yield: $117 \mathrm{mg}(0.355 \mathrm{mmol}, 93 \%)$; pale-yellow amorphous solid; $[\alpha]_{\mathrm{D}}{ }^{24}+7.9(c 1.11, \mathrm{MeOH}) ; R_{f}=0.13$ (heptane-EtOAc, 3:7).
IR (neat): $3496,3336,3149,2959,2934,2905,2874,1699,1510$, $1447,1261,1118,1103,1071,755,733 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=3.49-3.63$ (m, $2 \mathrm{H}, \mathrm{H}-3$), 3.733.91 (m, $3 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-2), 4.14$ (t, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Fmoc}), 4.40$ (d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$-Fmoc), 7.27 (dt, $J=1.1,7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.58(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.73$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=48.2$ (CH-Fmoc), $64.1(\mathrm{C}-3), 68.2$ (CH_{2}-Fmoc), $70.6(\mathrm{C}-2), 79.2(\mathrm{C}-1), 120.9(\mathrm{CH}-\mathrm{Ar}), 126.0(\mathrm{CH}-$ $\mathrm{Ar}), 128.1$ (CH-Ar), 128.8 (CH-Ar), 142.5 ($\left.\mathrm{C}_{\mathrm{q}}-\mathrm{Fmoc}\right), 144.9\left(\mathrm{C}_{\mathrm{q}}{ }^{-}\right.$ Fmoc), $159.8(\mathrm{C}=\mathrm{O})$.
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNaO}_{5}$: 352.1161; found: 352.1157 .

Diallyl [(2-Hydroxypropane-1,3-diyl)bis(oxy)]dicarbamate (8f) The reaction was carried out according to General Procedure B with $4 f(74 \mathrm{mg}, 0.227 \mathrm{mmol})$, 2,4-dinitrophenylhydrazine ($90 \mathrm{mg}, 0.453$ $\mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{SO}_{4}(122 \mu \mathrm{~L}, 2.27 \mathrm{mmol})$ in $\mathrm{MeOH}(1.75 \mathrm{~mL})$, and then with $\mathrm{NaHCO}_{3}(381 \mathrm{mg}, 4.54 \mathrm{mmol})$ and $\operatorname{AllocCl}(120 \mu \mathrm{~L}, 1.14$ $\mathrm{mmol})$ in $\mathrm{MeOH}(7 \mathrm{~mL})$. The mixture was worked up as described and the crude product was purified by column chromatography (heptane-EtOAc, $4: 1 \rightarrow 1: 1$) to give $\mathbf{8 f}$.
Yield: $40 \mathrm{mg}\left(0.138 \mathrm{mmol}, 61 \%\right.$); pale-yellow oil; $R_{f}=0.19$ (hep-tane-EtOAc, 1:1).
IR (neat): 3262, 2924, 2851, 1714, 1249, 1109, 1042, 992, 930, $768 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.92$ and $3.98\left(\mathrm{ABX}, J_{\mathrm{AB}}=\right.$ $\left.11.3 \mathrm{~Hz}, J_{\mathrm{AX}}=2.9 \mathrm{~Hz}, J_{\mathrm{BX}}=7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-1\right), 4.14-4.20(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-2), 4.65\left(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.26(\mathrm{~d}, J=10.7 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.34\left(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right)$, 5.86-5.97 (m, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$), 7.99 (br s, $2 \mathrm{H}, \mathrm{NH}$).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=66.7\left(\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 67.0(\mathrm{C}-2)$, $77.7(\mathrm{C}-1), 118.9\left(\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 131.7\left(\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 158.1$ ($\mathrm{C}=\mathrm{O}$).
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{7}$: 313.1012; found: 313.1004 .

(9H-Fluoren-9-yl)methyl (2-Hydroxycyclopentyl) Oxycarbamate (6h)

The reaction was carried out according to General Procedure B with 4h ($100 \mathrm{mg}, 0.457 \mathrm{mmol}$), 2,4-dinitrophenylhydrazine (175 mg , $0.914 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{SO}_{4}(244 \mu \mathrm{~L}, 4.57 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$, and then with $\mathrm{NaHCO}_{3}(1.47 \mathrm{~g}, 18.28 \mathrm{mmol})$ and $\mathrm{FmocCl}(1.13 \mathrm{~g}$,
5.48 mmol) in $\mathrm{MeOH}(15 \mathrm{~mL})$. The mixture was worked up as described and the crude product was purified by column chromatography (heptane-EtOAc, 9:1 $\rightarrow 8: 2$) to give $\mathbf{6 h}$.

Yield: 152.8 mg ($0.451 \mathrm{mmol}, 99 \%$); pale-yellow oil; $R_{f}=0.13$ (heptane-EtOAc, 7:3).
IR (neat): $3270,2957,1723,1450,1251,1115,908,758,728 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.49-1.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.59$ 1.73 (m, $3 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5$), 1.89-2.00 (m, $2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$), 2.36 (br s, $1 \mathrm{H}, \mathrm{OH}), 4.04-4.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 4.13-4.18$ (m, 1 H, H-2), 4.20 ($\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Fmoc}$), $4.50\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-Fmoc), 7.29 (td, $J=0.9,7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.38(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, 7.55 (br s, $1 \mathrm{H}, \mathrm{NH}), 7.56(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.74$ (d, $J=$ 7.6 Hz, $2 \mathrm{H}, \mathrm{ArH}$).
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=20.5$ (C-4), 27.9 (C-5), 31.7 (C3), 47.3 ($\mathrm{CH}-\mathrm{Fmoc}$), $67.6\left(\mathrm{CH}_{2}\right.$-Fmoc), $75.8(\mathrm{C}-2), 93.5(\mathrm{C}-1)$, 120.2 ($\mathrm{CH}-\mathrm{Ar}$), 125.1 ($\mathrm{CH}-\mathrm{Ar}$), 127.3 ($\mathrm{CH}-\mathrm{Ar)} ,128.0(\mathrm{CH}-\mathrm{Ar})$, $141.5\left(\mathrm{C}_{\mathrm{q}}\right.$-Fmoc $), 143.6\left(\mathrm{C}_{\mathrm{q}}\right.$-Fmoc $), 158.3(\mathrm{C}=\mathrm{O})$.
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{4}: 340.1549$; found: 340.1561.

Allyl [(1S,2S)-2-Hydroxycyclohexyl]oxycarbamate (8i)

The reaction was carried out according to General Procedure B with $4 i(63 \mathrm{mg}, 0.27 \mathrm{mmol})$, 2,4-dinitrophenylhydrazine ($107 \mathrm{mg}, 0.54$ $\mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{SO}_{4}(145 \mu \mathrm{~L}, 2.70 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$, and then with $\mathrm{NaHCO}_{3}(454 \mathrm{mg}, 5.40 \mathrm{mmol})$ and AllocCl $(145 \mu \mathrm{~L}, 1.35$ $\mathrm{mmol})$ in $\mathrm{MeOH}(8 \mathrm{~mL})$. The mixture was worked up as described and the crude product was purified by column chromatography (heptane-EtOAc, $8: 2 \rightarrow 6: 4$) to give an inseparable mixture of $\mathbf{8 i}$ and Alloc-protected 2,4-dinitrophenylhydrazine (117 mg) as an orange solid. This mixture was purified by preparative HPLC (NW50 column, Merck; heptane-EtOAc, 10:0 $\rightarrow 6: 4$ over $40 \mathrm{~min} ; 100 \mathrm{~mL} / \mathrm{min}$; UV detection at 254 nm) to give $\mathbf{8 i}$

Yield: $47 \mathrm{mg}(0.218 \mathrm{mmol}, 81 \%)$; pale-yellow oil; $R_{f}=0.44$ (hep-tane-EtOAc, $1: 1$; visualized by KMnO_{4} only).
IR (neat): 3223, 2938, 2863, 1718, 1453, 1256, 1111, 1084, 993, 920, $770 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.13-1.51$ (m, $4 \mathrm{H}, \mathrm{CH}_{2}$-cyclohexane), 1.64-1.84 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$-cyclohexane), 1.92-2.13 (m, 2 H , CH_{2}-cyclohexane), 3.47-3.62 (m, $2 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-2$), $4.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{OH}), 4.65\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.27(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.34\left(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right)$, $5.87-5.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 7.86($ br s, $2 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=23.7,24.3(\mathrm{C}-4, \mathrm{C}-5), 28.8,32.3$ $(\mathrm{C}-3, \mathrm{C}-6), 66.7\left(\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 71.0(\mathrm{C}-2), 90.4(\mathrm{C}-1), 118.8$ $\left(\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 131.6\left(\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 158.8(\mathrm{C}=\mathrm{O})$.

HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{4}: 216.1236$; found: 216.1219 .
(1R,2R,3S,4R,5R)-4-(Aminooxy)-2-(naphthalen-2-ylmethoxy)-6,8-dioxabicyclo[3.2.1]octan-3-ol (5j)
To a solution of $\mathbf{4 j}$ ($100 \mathrm{mg}, 0.238 \mathrm{mmol}, 1$ equiv) in anhydrous $\mathrm{MeOH}(2 \mathrm{~mL})$ and THF $(100 \mu \mathrm{~L})$ were added $\mathrm{H}_{2} \mathrm{SO}_{4}(128 \mu \mathrm{~L}, 2.38$ mmol, 10 equiv) and 2,4-dinitrophenylhydrazine ($94 \mathrm{mg}, 0.477$ mmol, 2 equiv) and the mixture was stirred at r.t. for $16 \mathrm{~h} .2,4-\mathrm{Di}-$ nitrophenylhydrazine ($47 \mathrm{mg}, 0.238 \mathrm{mmol}, 1$ equiv) was then added to complete the reaction and the mixture was stirred for 1 h before being neutralized with powdered $\mathrm{NaHCO}_{3}(400 \mathrm{mg}, 4.76 \mathrm{mmol}, 20$ equiv). After addition of $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, the aqueous layer was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$ and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by column chromatography (heptane-EtOAc, $1: 1 \rightarrow 3: 7$) gave $\mathbf{5 j}$.
Yield: 57 mg ($0.180 \mathrm{mmol}, 76 \%$); pale-yellow oil; $[\alpha]_{\mathrm{D}}{ }^{24}-22.4$ (c $0.86, \mathrm{MeOH}$); $R_{f}=0.15$ (heptane-EtOAc, 3:7).
IR (neat): $3524,3327,2912,1102,1029,1016,896,860,813 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.39(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.49$ (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.64(\mathrm{dd}, J=5.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.80$ (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.95$ (t, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.57$ (d, $J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.83$ and $4.91\left(\mathrm{AB}, J_{\mathrm{AB}}=12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ NAP), 5.52 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1$), $7.44-7.55$ (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.79-7.88 (m, 4 H, ArH)
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=66.5(\mathrm{C}-6), 70.7(\mathrm{C}-3), 72.0\left(\mathrm{CH}_{2}-\right.$ NAP), 75.5 (C-5), 79.6 (C-4), 84.0 (C-2), 100.1 (C-1), 125.8 (CHAr), 126.0 ($\mathrm{CH}-\mathrm{Ar}$), 126.2 ($\mathrm{CH}-\mathrm{Ar}$), 126.8 ($\mathrm{CH}-\mathrm{Ar}$), 127.7 ($\mathrm{CH}-$ $\mathrm{Ar}), 127.9$ ($\mathrm{CH}-\mathrm{Ar}$), 128.4 ($\mathrm{CH}-\mathrm{Ar}$), $133.0\left(\mathrm{C}_{\mathrm{q}}-\mathrm{NAP}\right)$, $133.2\left(\mathrm{C}_{\mathrm{q}}-\right.$ NAP), 135.3 (C_{q}-NAP).

HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{5}: 318.1341$; found: 318.1350 .

Fluorenylmethyl $\{(1 R, 2 R, 3 S, 4 R, 5 R)-3-H y d r o x y-2-(n a p h t h a l e n-$ 2-ylmethoxy)-6,8-dioxabicyclo[3.2.1]octan-4-yl\}oxycarbamate (6j)
The reaction was carried out according to General Procedure B with $4 \mathbf{j}$ ($100 \mathrm{mg}, 0.238 \mathrm{mmol}$), 2,4-dinitrophenylhydrazine (94 mg , $0.477 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{SO}_{4}(128 \mu \mathrm{~L}, 2.38 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$. THF $(100 \mu \mathrm{~L})$ was added to improve the solubility of the starting material. After 16 h at r.t., 2,4-dinitrophenylhydrazine $(47 \mathrm{mg}$, $0.238 \mathrm{mmol}, 1$ equiv) was added to complete the reaction and the mixture was stirred for 2 h before being diluted with $\mathrm{MeOH}(8 \mathrm{~mL})$. $\mathrm{NaHCO}_{3}(400 \mathrm{mg}, 4.76 \mathrm{mmol})$ and $\mathrm{FmocCl}(308 \mathrm{mg}, 1.19 \mathrm{mmol})$ were added and the reaction mixture was stirred at r.t. for 4 h . Addition of $\mathrm{NaHCO}_{3}(200 \mathrm{mg}, 2.38 \mathrm{mmol})$ and $\mathrm{FmocCl}(154 \mathrm{mg}$, 0.595 mmol) were necessary to complete the reaction. The mixture was then stirred overnight and worked up as described. Purification by column chromatography (heptane-EtOAc, $4: 1 \rightarrow 3: 2$) afforded $\mathbf{6 j}$.
Yield: $98 \mathrm{mg}(0.182 \mathrm{mmol}, 76 \%)$; pale-yellow amorphous solid; $[\alpha]_{\mathrm{D}}{ }^{24}-2.6\left(c 0.94, \mathrm{CHCl}_{3}\right) ; R_{f}=0.21$ (heptane-EtOAc, 1:1).

IR (neat): 3264, 1725, 1450, 1249, 1102, 1073, 1009, 757, $739 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.36(\mathrm{dd}, J=0.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4), 3.56-3.63 (m, 2 H, H-2, H-6), 3.74 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6)$, $3.95(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.18(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Fmoc})$, $4.42-4.56\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5, \mathrm{CH}_{2}-\mathrm{Fmoc}\right), 4.76$ and $4.87\left(\mathrm{AB}, J_{\mathrm{AB}}=\right.$ $\left.12.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NAP}\right), 5.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 7.22-7.57(\mathrm{~m}, 9 \mathrm{H}$, ArH), 7.68-7.84 (m, $6 \mathrm{H}, \mathrm{ArH}$), 7.91 (s, $1 \mathrm{H}, \mathrm{NH}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=46.9$ (CH-Fmoc), 66.5 (C-6), 67.7 $\left(\mathrm{CH}_{2}-\mathrm{Fmoc}\right), 69.4(\mathrm{C}-3), 72.0\left(\mathrm{CH}_{2}-\mathrm{NAP}\right), 75.7(\mathrm{C}-5), 79.4(\mathrm{C}-4)$, 86.4 (C-2), 100.1 (C-1), 120.0 (CH-Ar), 124.9 (CH-Ar), 125.8 (CHAr), 126.0 (CH-Ar), 126.2 (CH-Ar), 126.8 (CH-Ar), 127.2 (CH$\mathrm{Ar}), 127.7$ (CH-Ar), 127.9 (CH-Ar), 128.3 (CH-Ar), $133.0\left(\mathrm{C}_{\mathrm{q}}-\right.$ NAP), $133.2\left(\mathrm{C}_{\mathrm{q}}\right.$-NAP $), 135.1\left(\mathrm{C}_{\mathrm{q}}-\mathrm{NAP}\right), 141.3\left(\mathrm{C}_{\mathrm{q}}\right.$-Fmoc $), 143.2$ (C_{q}-Fmoc), $143.3\left(\mathrm{C}_{\mathrm{q}}\right.$-Fmoc $), 158.3(\mathrm{C}=\mathrm{O})$.
HRMS (ESI-TOF): m/z $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{7}$: 557.2288; found: 557.2264.

Benzyl \{(1R,2R,3S,4R,5R)-3-Hydroxy-2-(naphthalen-2-yl-methoxy)-6,8-dioxabicyclo[3.2.1]octan-4-yl\}oxycarbamate (7j) The reaction was carried out according to General Procedure B with $4 \mathbf{j}(100 \mathrm{mg}, 0.238 \mathrm{mmol}), 2,4$-dinitrophenylhydrazine (141 mg , 0.714 mmol, 3 equiv), and $\mathrm{H}_{2} \mathrm{SO}_{4}(128 \mu \mathrm{~L}, 2.38 \mathrm{mmol})$ in $\mathrm{MeOH}(2$ $\mathrm{mL})$ and THF ($100 \mu \mathrm{~L}$, added to improve the solubility of the starting material) and then with $\mathrm{NaHCO}_{3}(400 \mathrm{mg}, 4.76 \mathrm{mmol})$ and Cbz$\mathrm{Cl}(179 \mu \mathrm{~L}, 1.19 \mathrm{mmol})$ in $\mathrm{MeOH}(8 \mathrm{~mL})$. The mixture was worked up as described and the crude product was purified by column chromatography (heptane-EtOAc, $8: 2 \rightarrow 6: 4$) to give $\mathbf{7 j}$.

Yield: 95 mg ($0.210 \mathrm{mmol}, 88 \%$); pale-yellow oil; $[\alpha]_{\mathrm{D}}{ }^{24}-0.3$ (c $1.02, \mathrm{CHCl}_{3}$); $R_{f}=0.15$ (heptane-EtOAc, 3:2).

IR (neat): $3384,3209,1721,1511,1269,1116,1101,1076,1011$, 993, 973, 877, 826, 751, $735 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.36(\mathrm{dd}, J=0.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 4), 3.57 (dd, $J=5.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.66-3.75$ (m, $2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-$ 6), 3.99 (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.51(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, 4.75 and $4.87\left(\mathrm{AB}, J_{\mathrm{AB}}=12.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NAP}\right), 5.10$ and 5.11 $\left(\mathrm{AB}, J_{\mathrm{AB}}=12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Cbz}\right), 5.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 7.26-7.31$ (m, 5 H, ArH), 7.41-7.49 (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.74-7.82 (m, $6 \mathrm{H}, \mathrm{ArH}$), 8.13 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=66.4(\mathrm{C}-6), 67.9\left(\mathrm{CH}_{2}-\mathrm{Cbz}\right), 69.4$ (C-3), $71.9\left(\mathrm{CH}_{2}-\mathrm{NAP}\right), 75.6(\mathrm{C}-5), 79.5(\mathrm{C}-4), 86.6(\mathrm{C}-2), 100.1$ (C-1), 125.7 (CH-Ar), 126.0 (CH-Ar), 126.1 (CH-Ar), 126.7 (CHAr), 127.6 ($\mathrm{CH}-\mathrm{Ar}$), 127.8 (CH-Ar), 128.2 (CH-Ar), 128.5 (CHAr), 128.5 (CH-Ar), 133.0 ($\left.\mathrm{C}_{\mathrm{q}}-\mathrm{NAP}\right), 133.1$ ($\left.\mathrm{C}_{\mathrm{q}}-\mathrm{NAP}\right), 135.1\left(\mathrm{C}_{\mathrm{q}}-\right.$ NAP), $135.2\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Cbz}\right), 158.3(\mathrm{C}=\mathrm{O})$.
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NNaO}_{7}$: 474.1529; found: 474.1534.

Allyl \{(1R,2R,3S,4R,5R)-3-Hydroxy-2-(naphthalen-2-ylmeth-oxy)-6,8-dioxabicyclo[3.2.1]octan-4-yl\}oxycarbamate (8j)

The reaction was carried out according to General Procedure B with $\mathbf{4 j}(100 \mathrm{mg}, 0.238 \mathrm{mmol}), 2,4-$ dinitrophenylhydrazine $(141 \mathrm{mg}$, $0.714 \mathrm{mmol}, 3$ equiv), and $\mathrm{H}_{2} \mathrm{SO}_{4}(128 \mu \mathrm{~L}, 2.38 \mathrm{mmol})$ in MeOH (2 mL) and THF ($100 \mu \mathrm{~L}$, added to improve the solubility of the starting material) and then, with $\mathrm{NaHCO}_{3}(400 \mathrm{mg}, 4.76 \mathrm{mmol})$ and AllocCl $(126 \mu \mathrm{~L}, 1.19 \mathrm{mmol})$ in $\mathrm{MeOH}(8 \mathrm{~mL})$. The mixture was worked up as described and the crude product was purified by column chromatography (heptane-EtOAc, $8: 2 \rightarrow 6: 4$) to give $\mathbf{8 j}$.
Yield: $71 \mathrm{mg}(0.177 \mathrm{mmol}, 74 \%)$; pale-yellow solid; $[\alpha]_{\mathrm{D}}{ }^{24}-1.1$ (c $0.92, \mathrm{CHCl}_{3}$); $R_{f}=0.15$ (heptane-EtOAc, 3:2).
IR (neat): $3381,3217,1714,1507,1258,1099,1076,996,819$, $749 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.38(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.60$ (dd, $J=5.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.67-3.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-6), 4.00$ ($\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $4.54(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.59(\mathrm{~d}, J=$ $\left.5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 4.78$ and $4.90\left(\mathrm{AB}, J_{\mathrm{AB}}=12.4 \mathrm{~Hz}, 2 \mathrm{H}\right.$, CH_{2}-NAP), $5.18-5.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1)$, 5.79-5.94 (m, 1 H, CH2-CH=CH2), 7.42-7.51 (m, 3 H, ArH), 7.757.84 (m, $4 \mathrm{H}, \mathrm{ArH}$), 8.18 (s, $1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=66.5(\mathrm{C}-6), 66.7\left(\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right)$, $69.4(\mathrm{C}-3), 71.9\left(\mathrm{CH}_{2}-\mathrm{NAP}\right), 75.7(\mathrm{C}-5), 79.5(\mathrm{C}-4), 86.6(\mathrm{C}-2)$, $100.1(\mathrm{C}-1), 118.8\left(\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 125.8(\mathrm{CH}-\mathrm{Ar}), 126.0(\mathrm{CH}-\mathrm{Ar})$, 126.1 ($\mathrm{CH}-\mathrm{Ar}$), 126.7 ($\mathrm{CH}-\mathrm{Ar}$), 127.6 ($\mathrm{CH}-\mathrm{Ar)}$,127.8 (CH-Ar), $128.3(\mathrm{CH}-\mathrm{Ar}), 131.5\left(\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right), 133.0\left(\mathrm{C}_{\mathrm{q}}-\mathrm{NAP}\right), 133.1\left(\mathrm{C}_{\mathrm{q}}-\right.$ NAP), $135.2\left(\mathrm{C}_{\mathrm{q}}-\mathrm{NAP}\right), 158.2(\mathrm{C}=\mathrm{O})$.
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NNaO}_{7}$: 424.1372; found: 424.1355 .
(9H-Fluoren-9-yl)methyl $\{(1 R, 2 R, 3 R, 4 R)$-3-[(Benzyloxy)meth-yl]-2-hydroxy-4-(naphthalen-2-ylmethoxy)cyclopentyl\}oxycarbamate (2a)
The reaction was carried out according to General Procedure B with $\mathbf{4 k}(37 \mathrm{mg}, 0.075 \mathrm{mmol}), 2,4$-dinitrophenylhydrazine ($30 \mathrm{mg}, 0.150$ $\mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{SO}_{4}(40 \mu \mathrm{~L}, 0.750 \mathrm{mmol})$ in $\mathrm{MeOH}(600 \mu \mathrm{~L})$, and then with $\mathrm{NaHCO}_{3}(126 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $\mathrm{FmocCl}(97 \mathrm{mg}, 0.375$ $\mathrm{mmol})$ in $\mathrm{MeOH}(2.5 \mathrm{~mL})$. The mixture was worked up as described and the crude product was purified by column chromatography (heptane-EtOAc, $8: 2 \rightarrow 6: 4$) to give $\mathbf{2 a}$.
Yield: $40 \mathrm{mg}(0.065 \mathrm{mmol}, 87 \%)$; pale-yellow foam; $[\alpha]_{\mathrm{D}}{ }^{24}-36.6$ (c $1.63, \mathrm{CHCl}_{3}$); $R_{f}=0.12$ (heptane-EtOAc, 3:2).
IR (neat): 3256, 3061, 2887, 2863, 1723, 1451, 1250, 1114, 1096, 1074, 755, $741 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.90-2.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 2.07-$ 2.30 (m, $2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-5$), 3.18 (br s, $1 \mathrm{H}, \mathrm{OH}$), 3.56 and 3.63 (ABX, $\left.J_{\mathrm{AB}}=9.3 \mathrm{~Hz}, J_{\mathrm{AX}}=5.2 \mathrm{~Hz}, J_{\mathrm{BX}}=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{OBn}\right), 3.80-$
3.88 (m, $1 \mathrm{H}, \mathrm{H}-1), 3.97$ (dd, $J=6.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.20$ (t, $J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Fmoc}$), 4.34 (dt, $J=6.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.46$ and $4.50\left(\mathrm{AB}, J_{\mathrm{AB}}=11.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Bn}\right), 4.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\right.$ Fmoc), 4.56 and $4.63\left(\mathrm{AB}, J_{\mathrm{AB}}=12.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{NAP}\right), 7.20-$ $7.50(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArH}), 7.52-7.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.59(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, 7.69-7.84 (m, 4 H, ArH).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=33.6(\mathrm{C}-5), 46.9(\mathrm{CH}-\mathrm{Fmoc}), 51.1$ (C-2), $67.5\left(\mathrm{CH}_{2}-\mathrm{Fmoc}\right), 69.7\left(\mathrm{CH}_{2}-\mathrm{OBn}\right)$, $71.2\left(\mathrm{CH}_{2}-\mathrm{NAP}\right), 73.2$ (C-3), $76.3\left(\mathrm{CH}_{2}-\mathrm{Bn}\right), 76.5(\mathrm{C}-1), 90.4(\mathrm{C}-4), 120.0(\mathrm{CH}-\mathrm{Ar}), 125.0$ (CH-Ar), 125.7 (CH-Ar), 125.8 (CH-Ar), 126.1 (CH-Ar), 126.4 (CH-Ar), 127.1 (CH-Ar), 127.6 (CH-Ar), 127.6 (CH-Ar), 127.6 (CH-Ar), 127.8 (CH-Ar), 128.1 (CH-Ar), 128.4 (CH-Ar), 132.9 $\left(\mathrm{C}_{\mathrm{q}}-\mathrm{NAP}\right), 133.2\left(\mathrm{C}_{\mathrm{q}}-\mathrm{NAP}\right), 135.6\left(\mathrm{C}_{\mathrm{q}}-\mathrm{NAP}\right), 138.1\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Bn}\right), 141.3$ $\left(\mathrm{C}_{\mathrm{q}}\right.$-Fmoc $), 143.3\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Fmoc}\right), 143.4\left(\mathrm{C}_{\mathrm{q}}-\mathrm{Fmoc}\right), 158.1(\mathrm{C}=\mathrm{O})$.
HRMS (ESI-TOF): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{NNaO}_{6}$: 638.2519; found: 638.2529.

Acknowledgment

A.F. and G.M. thank the ICSN for financial support.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

References

(1) Jones, L. W.; Major, R. T. J. Am. Chem. Soc. 1927, 49, 1527.
(2) (a) Berger, B. J. Antimicrob. Agents Chemother. 2000, 44, 2540. (b) Worthen, D. R.; Ratliff, D. K.; Rosenthal, G. A.; Trifonov, L.; Crooks, P. A. Chem. Res. Toxicol. 1996, 9, 1293.
(3) Gajewiak, J.; Tsukahara, R.; Fujiwara, Y.; Tigyi, G.; Prestwich, G. D. Org. Lett. 2008, 10, 1111; and references therein.
(4) (a) Stanek, J.; Frei, J.; Mett, H.; Schneider, P.; Regenass, U. J. Med. Chem. 1992, 35, 1339. (b) Klee, N.; Wong, P. E.; Baragaña, B.; Mazouni, F. E.; Phillips, M. A.; Barrett, M. P.; Gilbert, I. H. Bioorg. Med. Chem. Lett. 2010, 20, 4364.
(c) Salter-Cid, L. M.; Wang, E. Y.; Cockerill, K.; Linnik, M. D.; Victoria, E. J. WO2005014530 A2 20050217, 2005; Chem. Abstr. 2005, 14108.
(5) (a) Rose, K. J. Am. Chem. Soc. 1994, 116, 30. (b) Hackenberger, C. P. R.; Schwarzer, D. Angew. Chem. Int. Ed. 2008, 47, 10030. (c) Nicotra, F.; Cipolla, L.; Peri, F.; La Ferla, B.; Redaelli, C. Adv. Carbohydr. Chem. Biochem. 2007, 61, 353. (d) Dirksen, A.; Dawson, P. E. Bioconjugate Chem. 2008, 19, 2543.
(6) (a) Malik, G.; Guinchard, X.; Crich, D. Org. Lett. 2012, 14, 596. (b) Malik, G.; Ferry, A.; Guinchard, X.; Cresteil, T.; Crich, D. Chem.-Eur. J. 2012, in press.
(7) Mellor, S. L.; McGuire, C.; Chan, W. C. Tetrahedron Lett. 1997, 38, 3311.
(8) (a) Jaipuri, F.; Mautino, M. R.; Vahanian, N. N.; Young, W.B.; Rossi, G.; Link, C. J. J. WO2008057235, 2008; Chem. Abstr. 2008, 590190. (b) Buchalska, E.; Plenkiewicz, J. Synth. Commun. 2002, 32, 2591. (c) Fruchier, A.; Moragues, V.; Pétrus, C.; Pétrus, F. Bull. Soc. Chim. Fr. 1984, 2, 173.
(9) Su, S.; Acquilano, D. E.; Arumugasamy, J.; Beeler, A. B.; Eastwood, E. L.; Giguere, J. R.; Lan, P.; Lei, X.; Min, G. K.; Yeager, A. R.; Zhou, Y.; Panek, J. S.; Snyder, J. K.; Schaus, S. E.; Porco, J. A. Org. Lett. 2005, 7, 2751.
(10) Ready, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 2687.
(11) (a) Soltani Rad, M. N.; Behrouz, S.; Dianat, M. Synthesis 2008, 2055. (b) Pazenok, S.; Lui, N. EP 1925610 A1 20080528, 2008; Chem. Abstr. 2008, 632048.
(12) Huber, J. E.; Raushel, J. Epichlorohydrin, In Encyclopedia of Reagents for Organic Synthesis [Online]; John Wiley \& Sons Ltd.: New York, 2011,
www.mrw.interscience.wiley.com/eros/.
DOI: 10.1002/047084289X.re005.pub2.

