Iron-Catalyzed Asymmetric Transfer Hydrogenation of Ketimines

Significance: The authors report an iron-catalyzed asymmetric transfer hydrogenation under mild conditions that gives chiral amines with high enantioselectivity (94–99% ee). The system provides a solution to the challenging C=N bond reduction and proceeds with 2-propanol as the reducing agent.

Comment: Iron(II)–PNNP complexes that catalyze the asymmetric reduction of \(N\)-(diphenylphosphinoyl)- and \(N\)-(4-tolylsulfonyl)ketimines were developed. The \((R,R)\)-diamine catalyst produces the \((S,S)\)-amine. \((S,S)\)-3 are found to be the most active and stereoselective catalyst. The reaction outcome is influenced mainly by the steric around the imine carbon but is insensitive to its electronic character.

Selected examples:

- Fe(N=N)PPh\(_2\)PPh\(_2\)Br\([\text{BPh}_4]\)
 - \(R = \text{Ph}\), 92% conv., 95% ee (40 min)
 - \(R = \text{Br}\), 92% conv., 98% ee (60 min)
 - \(R = \text{OMe}\), 91% conv., 98% ee (40 min)
 - \(R = \text{SO}_2\text{Tol}\), 83% yield, 98% ee (60 min)

- \((S,S)\)-catalyst
 - 92% yield, >99% ee (30 min)
 - 26% yield, 94% ee (12 h)

- \(R = \text{Br}\), 92% conv., 98% ee (120 min)
 - 30% yield, 96% ee (60 min)

- \(R = \text{OMe}\), 91% conv., 98% ee (60 min)
 - 91% yield, >99% ee (120 min)
 - 92% conv., 95% ee (40 min)

Category: Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

Key words: iron, transfer hydrogenation, ketimines