Planta Med 2013; 79(06): 465-467
DOI: 10.1055/s-0032-1328293
Biological and Pharmacological Activity
Letters
Georg Thieme Verlag KG Stuttgart · New York

Quercetin Mitochondriotropic Derivatives Antagonize Nitrate Tolerance and Endothelial Dysfunction of Isolated Rat Aorta Rings

Miriam Durante
1   Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
,
Giampietro Sgaragli
1   Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
,
Lucia Biasutto
2   CNR Istituto di Neuroscienze, Padova, Italy
3   Dipartimento di Scienze Biomediche, Università degli Studi di Padova, Padova, Italy
,
Andrea Mattarei
2   CNR Istituto di Neuroscienze, Padova, Italy
4   Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova, Italy
,
Fabio Fusi
1   Dipartimento di Scienze della Vita, Università degli Studi di Siena, Siena, Italy
› Author Affiliations
Further Information

Publication History

received 28 December 2012
revised 04 February 2013

accepted 05 February 2013

Publication Date:
11 March 2013 (online)

Abstract

Chronic use of glyceryl trinitrate is limited by serious side effects, inter alia tolerance and endothelial dysfunction of coronary and resistance arteries. The natural flavonoid quercetin has been shown to counteract the development of glyceryl trinitrate tolerance in vitro. Two mitochondriotropic, 4-O-triphenylphosphoniumbutyl derivatives of quercetin (QTA-3BTPI and Q-3BTPI) were compared to quercetin for protection against glyceryl trinitrate-induced tolerance and endothelial dysfunction of isolated rat aorta rings. Both QTA-3BTPI and Q-3BTPI significantly counteracted the reduced vascular responsiveness to both glyceryl trinitrate and acetylcholine caused by prolonged exposure of the vessel to glyceryl trinitrate itself, their potency being much greater than that of quercetin. QTA-3BTPI, however, turned out to cause endothelial dysfunction per se. Since Q-3BTPI antagonized in vitro nitrate tolerance and endothelial dysfunction of vessels, this encourages assessing whether this effect is displayed also in vivo during long-term glyceryl trinitrate treatment.

Supporting Information

 
  • References

  • 1 Wenzel P, Mollnau H, Oelze M, Schulz E, Wickramanayake JM, Müller J, Schuhmacher S, Hortmann M, Baldus S, Gori T, Brandes RP, Münzel T, Daiber A. First evidence for a crosstalk between mitochondrial and NADPH oxidase-derived reactive oxygen species in nitroglycerin-triggered vascular dysfunction. Antioxid Redox Signal 2008; 10: 1435-1447
  • 2 Hink U, Daiber A, Kayhan N, Trischler J, Kraatz C, Oelze M, Mollnau H, Wenzel P, Vahl CF, Ho KK, Weiner H, Münzel T. Oxidative inhibition of the mitochondrial aldehyde dehydrogenase promotes nitroglycerin tolerance in human blood vessels. J Am Coll Cardiol 2007; 50: 2226-2232
  • 3 Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 2007; 47: 629-656
  • 4 Green K, Brand MD, Murphy MP. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes 2004; 53: 110-118
  • 5 Yeates RA, Schmid M. Total prevention of the development of in vitro tolerance to organic nitrates. Experiments with antioxidants. Arzneimittelforschung 1992; 42: 297-302
  • 6 Mattarei A, Biasutto L, Marotta E, De Marchi U, Sassi N, Garbisa S, Zoratti M, Paradisi C. A mitochondriotropic derivative of quercetin: a strategy to increase the effectiveness of polyphenols. Chembiochem 2008; 9: 2633-2642
  • 7 Daiber A, Wenzel P, Oelze M, Münzel T. New insights into bioactivation of organic nitrates, nitrate tolerance and cross-tolerance. Clin Res Cardiol 2008; 97: 12-20
  • 8 Suri S, Liu XH, Rayment S, Hughes DA, Kroon PA, Needs PW, Taylor MA, Tribolo S, Wilson VG. Quercetin and its major metabolites selectively modulate cyclic GMP-dependent relaxations and associated tolerance in pig isolated coronary artery. Br J Pharmacol 2010; 159: 566-575
  • 9 Fiorani M, Guidarelli A, Blasa M, Azzolini C, Candiracci M, Piatti E, Cantoni O. Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. J Nutr Biochem 2010; 21: 397-404
  • 10 Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr 2004; 79: 727-747
  • 11 Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 2005; 81: 243S-255S
  • 12 Lin HC, Cheng TH, Chen YC, Juan SH. Mechanism of heme oxygenase-1 gene induction by quercetin in rat aortic smooth muscle cells. Pharmacology 2004; 71: 107-112
  • 13 Wenzel P, Oelze M, Coldewey M, Hortmann M, Seeling A, Hink U, Mollnau H, Stalleicken D, Weiner H, Lehmann J, Li H, Forstermann U, Münzel T, Daiber A. Heme oxygenase-1: a novel key player in the development of tolerance in response to organic nitrates. Arterioscler Thromb Vasc Biol 2007; 27: 1729-1735
  • 14 Münzel T, Daiber A, Gori T. Nitrate therapy: new aspects concerning molecular action and tolerance. Circulation 2011; 123: 2132-2144
  • 15 Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000; 87: 840-844
  • 16 Félétou M, Vanhoutte PM. Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 2006; 291: H985-H1002
  • 17 Schulz E, Jansen T, Wenzel P, Daiber A, Münzel T. Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension. Antioxid Redox Signal 2008; 10: 1115-1126
  • 18 Smith RA, Murphy MP. Mitochondria-targeted antioxidants as therapies. Discov Med 2011; 11: 106-114
  • 19 Lopez-Lopez G, Moreno L, Cogolludo A, Galisteo M, Ibarra M, Duarte J, Lodi F, Tamargo J, Perez-Vizcaino F. Nitric oxide (NO) scavenging and NO protecting effects of quercetin and their biological significance in vascular smooth muscle. Mol Pharmacol 2004; 65: 851-859
  • 20 Sànchez M, Lodi F, Vera R, Villar IC, Cogolludo A, Jimenez R, Moreno L, Romero M, Tamargo J, Pérez-Vizcaino F, Duarte J. Quercetin and isorhamnetin prevent endothelial dysfunction, superoxide production, and overexpression of p 47phox induced by angiotensin II in rat aorta. J Nutr 2007; 137: 910-915
  • 21 Steffen Y, Gruber C, Schewe T, Sies H. Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch Biochem Biophys 2008; 469: 209-219
  • 22 Fusi F, Marazova K, Pessina F, Gorelli B, Valoti M, Frosini M, Sgaragli GP. On the mechanisms of the antispasmodic action of some hindered phenols in rat aorta rings. Eur J Pharmacol 2000; 394: 109-115