Planta Med 2013; 79(12): 1068-1076
DOI: 10.1055/s-0032-1328764
Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Unveiling Ontogenesis of Herbal Medicine in Plant Chemical Profiles by Infrared Macro-Fingerprinting

Chang-Hua Xu
1   Department of Chemistry, Tsinghua University, Beijing, PR China
,
Su-Li Liu
1   Department of Chemistry, Tsinghua University, Beijing, PR China
2   Institute of Chinese Materia Medica, Chengde Medical University, Hebei, PR China
,
Sheng-Nan Zhao
2   Institute of Chinese Materia Medica, Chengde Medical University, Hebei, PR China
,
Shou-Zhuo Li
2   Institute of Chinese Materia Medica, Chengde Medical University, Hebei, PR China
,
Su-Qin Sun
1   Department of Chemistry, Tsinghua University, Beijing, PR China
› Author Affiliations
Further Information

Publication History

received 04 April 2013
revised 02 June 2013

accepted 09 June 2013

Publication Date:
23 July 2013 (online)

Abstract

Given that harvesting time has a great impact on the quality of herbal medicine, knowing the ontogenesis in the chemical profile aspect is essential to determine the optimal harvesting season. A high-throughput and versatile approach (herbal infrared macro-fingerprinting) harmonizing with the character of herbal medicine and providing the whole chemical profile (entirety), group analogues (part), and single compounds (major components) is developed to rapidly disclose the variation rule of the full chemical profile of herbal medicine over a growing season without extraction pretreatments, and thus to determine the optimal harvesting period in respect to groups of chemical compounds using Scutellaria baicalensis as a demonstration. IR macro-fingerprints of Scutellaria baicalensis harvested in the same period have a high similarity (> 0.91) despite small variations, suggesting that IR macro-fingerprinting can faithfully reflect the spectacle of “disordered order” in nature. From Year-1 spring to Year-3 autumn, general contents (%, w/w) of total flavonoids fluctuate up and down with a maximum value in Year-2 spring, and that of saccharides is relatively stable except for the attenuation from Year-2 autumn to Year-3 spring. From Year-1 autumn to Year-2 spring, flavonoid aglycones initially produced in Scutellaria baicalensis are extensively transformed to responding flavonoid glycosides. From Year-2 spring to Year-3 autumn, flavonoid glycosides are converted back to their corresponding aglycones. The best seasons for collecting Scutellaria baicalensis with a high content of flavonoid glycosides and aglycones would be Year-2 spring and Year-3 spring, respectively.

Supporting Information

 
  • References

  • 1 Tian P. Convergence: Where West meets East. Nature 2011; 480: S84-S86
  • 2 Wang L, Zhou GB, Liu P, Song JH, Liang Y, Yan XJ, Xu F, Wang BS, Mao JH, Shen ZX, Chen SJ, Chen Z. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci USA 2008; 105: 4826-4831
  • 3 Lam W, Bussom S, Guan F, Jiang Z, Zhang W, Gullen EA, Liu SH, Cheng YC. The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity. Sci Transl Med 2010; 2: 45ra59
  • 4 Xu Z. Modernization: One step at a time. Nature 2011; 480: S90-S92
  • 5 Ward JL, Harris C, Lewis J, Beale MH. Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana . Phytochemistry 2003; 62: 949-957
  • 6 Dan M, Su M, Gao X, Zhao T, Zhao A, Xie G, Qiu Y, Zhou M, Liu Z, Jia W. Metabolite profiling of Panax notoginseng using UPLC–ESI-MS. Phytochemistry 2008; 69: 2237-2244
  • 7 Tilton R, Paiva AA, Guan JQ, Marathe R, Jiang Z, van Eyndhoven WV, Bjoraker J, Prusoff Z, Wang H, Liu SH, Cheng YC. A comprehensive platform for quality control of botanical drugs (PhytomicsQC): a case study of Huangqin Tang (HQT) and PHY906. Chin Med 2010; 5: 30-44
  • 8 Li S, Han Q, Qiao C, Song J, Cheng CL, Xu H. Chemical markers for the quality control of herbal medicines: an overview. Chin Med 2008; 3: 7-22
  • 9 Li YG, Song L, Liu M, Hu ZB, Wang ZT. Advancement in analysis of Salviae miltiorrhizae Radix et Rhizoma (Danshen). J Chromatogr A 2009; 1216: 1941-1953
  • 10 Lu GH, Chan K, Leung K, Chan CL, Zhao ZZ, Jiang ZH. Assay of free ferulic acid and total ferulic acid for quality assessment of Angelica sinensis . J Chromatogr A 2005; 1068: 209-219
  • 11 Griffiths PR, Haseth JAD. Fourier transform infrared spectrometry. 2nd. edition. Hoboken: John Wiley & Sons, Inc.; 2007
  • 12 Fernandez DC, Bhargava R, Hewitt SM, Levin IW. Infrared spectroscopic imaging for histopathologic recognition. Nat Biotechnol 2005; 23: 469-474
  • 13 McKelvy ML, Britt TR, Davis BL, Gillie JK, Graves FB, Lentz LA. Infrared spectroscopy. Anal Chem 1998; 70: 119-178
  • 14 Lin M, Al-Holy M, Chang SS, Huang Y, Cavinato AG, Kang DH, Rasco BA. Rapid discrimination of Allicyclobacillus strains in apple juice by Fourier transform infrared spectroscopy. Int J Food Microbiol 2005; 105: 369-376
  • 15 Chan KLA, Kazarian SG. Detection of trace materials with Fourier transform infrared spectroscopy using a multi-channel detector. Analyst 2006; 131: 126-131
  • 16 Boulet JC, Williams P, Doco T. A Fourier transform infrared spectroscopy study of wine polysaccharides. Carbohydr Polym 2007; 69: 79-85
  • 17 Telesco CM, Fisher RS, Wyatt MC, Dermott SF, Kehoe TJJ, Novotny S, Mariñas N, Radomski JT, Packham C, Buizer JD, Hayward TL. Mid-infrared images of beta Pictoris and the possible role of planetesimal collisions in the central disk. Nature 2005; 433: 133-136
  • 18 Christensen PR, McSween HY, Bandfield JL, Ruff SW, Rogers AD, Hamilton VE, Gorelick N, Wyatt MB, Jakosky BM, Kieffer HH, Malin MC, Moersch JE. Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature 2005; 436: 504-509
  • 19 Keller LP, Bajt S, Baratta GA, Borg J, Bradley JP, Brownlee DE, Busemann H, Brucato JR, Burchell M, Colangeli L, dʼHendecourt L, Djouadi Z, Ferrini G, Flynn G, Franchi IA, Fries M, Grady MM, Graham GA, Grossemy F, Kearsley A, Matrajt G, Nakamura-Messenger K, Mennella V, Nittler L, Palumbo ME, Stadermann FJ, Tsou P, Rotundi A, Sandford SA, Snead C, Steele A, Wooden D, Zolensky M. Infrared spectroscopy of comet 81P/Wild 2 samples returned by stardust. Science 2006; 314: 1728-1731
  • 20 Kamei Y, Suzuki M, Watanabe K, Fujimori K, Kawasaki T, Deguchi T, Yoneda Y, Todo T, Takagi S, Funatsu T, Yuba S. Infrared laser-mediated gene induction in targeted single cells in vivo . Nat Methods 2009; 6: 79-81
  • 21 Martin FL, Kelly JG, Llabjani V, Martin-Hirsch PL, Patel II, Trevisan J, Fullwood NJ, Walsh MJ. Distinguishing cell types or populations based on the computational analysis of their infrared spectra. Nat Protoc 2010; 5: 1748-1760
  • 22 Khanmohammadi M, Garmarudi AB. Infrared spectroscopy provides a green analytical chemistry tool for direct diagnosis of cancer. Trends Anal Chem 2011; 30: 864-874
  • 23 Xie J, Huang H. Time-dependent adsorption behavior of β-lactoglobulin on ZnSe crystal surface studied by 2D correlation ATR/FTIR spectroscopy. Colloid Surf B 2011; 85: 97-102
  • 24 Sun SQ, Zhou Q, Chen JB. Infrared spectroscopy for complex mixtures. Beijing: Chemical Industry Press; 2011
  • 25 Sun SQ, Chen JB, Zhou Q, Lu GH, Chan K. Application of mid-infrared spectroscopy in the quality control of traditional Chinese medicines. Planta Med 2010; 76: 1987-1996
  • 26 Xu CH, Wang Y, Chen JB, Zhou Q, Wang P, Yang Y, Sun SQ. Infrared macro-fingerprint analysis-through-separation for holographic chemical characterization of herbal medicine. J Pharm Biomed 2013; 74: 298-307
  • 27 Xu BL, Zhang GJ, Sun SQ, Xu CH, Chen JB, Tu Y, Zhou Q, Cui M, Wang JJ, Wen CX. Rapid discrimination of three kinds of Radix Puerariae and their extracts by Fourier transform infrared spectroscopy and two-dimensional correlation infrared spectroscopy. J Mol Struct 2012; 1018: 88-95
  • 28 Lu GH, Zhou Q, Sun SQ, Leung KSY, Zhang H, Zhao ZZ. Differentiation of Asian ginseng, American ginseng and Notoginseng by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy. J Mol Struct 2008; 883: 91-98
  • 29 Gao XM. Traditional Chinese medicine. Beijing: China Press of Traditional Chinese Medicine; 2002
  • 30 Takahashi H, Chen MC, Hung P, Angst E, King JC, Park J, Brovman EY, Ishiguro H, Harris DM, Reber HA, Hines OJ, Gukovskaya AS, Go VLW, Eibl G. Baicalein, a component of Scutellaria baicalensis, induces apoptosis by Mcl-1 down-regulation in human pancreatic cancer cells. Biochim Biophys Acta 2011; 1813: 1465-1474
  • 31 Zhang DY, Wu J, Ye F, Xue L, Jiang SQ, Yi JZ, Zhang WD, Wei HC, Sung M, Wang W, Li XP. Inhibition of cancer cell proliferation and prostaglandin E-2 synthesis by Scutellaria baicalensis . Cancer Res 2003; 63: 4037-4043
  • 32 Huang RL, Chen CC, Huang HL, Chang CG, Chen CF, Chang CM, Hsieh MT. Anti-hepatitis B virus effects of wogonin isolated from Scutellaria baicalensis . Planta Med 2000; 66: 694-698
  • 33 Huang WH, Lee AR, Yang CH. Antioxidative and anti-inflammatory activities of polyhydroxyflavonoids of Scutellaria baicalensis GEORGI. Biosci Biotechnol Biochem 2006; 70: 2371-2380
  • 34 Zhang N, Van Crombruggen K, Holtappels G, Bachert C. A herbal composition of Scutellaria baicalensis and Eleutherococcus senticosus shows potent anti-inflammatory effects in an ex vivo human mucosal tissue model. Evid Based Complement Alternat Med 2012; 2012: 673145 advance online publication 5 Jan 2012; DOI: 10.1155/2012/673145.
  • 35 Shang X, He X, He X, Li M, Zhang R, Fan P, Zhang Q, Jia Z. The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharmacol 2010; 128: 279-313
  • 36 Wen H, Xiao S, Wang Y, Luo G. General situation of chemical constituions and drug-processing of Scuttellaria baicalensis Georgi. Nat Prod Res Dev 2004; 16: 575-580
  • 37 Chinese Pharmacopoeia Committee. Chinese Pharmacopoeia, part I, 2010 edition. Beijing: Chemical and Industrial Publisher; 2010: 282
  • 38 Hirotani M, Kuroda R, Suzuki H, Yoshikawa T. Cloning and expression of UDP-glucose: flavonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis . Planta 2000; 210: 1006-1013
  • 39 Nagashima S, Hirotani M, Yoshikawa T. Purification and characterization of UDP-glucuronate: baicalein 7-O-glucuronosyltransferase from Scutellaria baicalensis Georgi. cell suspension cultures. Phytochemistry 2000; 53: 533-538
  • 40 Hirunuma M, Shoyama Y, Sasaki K, Sakamoto S, Taura F, Shoyama Y, Tanaka H, Morimoto S. Flavone-catalyzed apoptosis in Scutellaria baicalensis . Phytochemistry 2011; 72: 752-760
  • 41 Sasaki K, Taura F, Shoyama Y, Morimoto S. Molecular characterization of a novel β-glucuronidase from Scutellaria baicalensis georgi. J Biol Chem 2000; 275: 27466-72
  • 42 DeNoyer LK, Dodd JG. Spectral enhancement and band resolution technique. In: Chalmers J, Griffiths P, editors Handbook of vibrational spectroscopy, Volume 3. New York: Wiley; 2002: 2232-2241