Semin Thromb Hemost 2013; 39(01): 048-058
DOI: 10.1055/s-0032-1328935
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Novel and Emerging Therapies: Thrombus-Targeted Fibrinolysis

Giuseppe Lippi
1   Dipartimento di Patologia e Medicina di Laboratorio, U.O. Diagnostica Ematochimica, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
,
Camilla Mattiuzzi
2   Servizio Governance Clinica, Ospedale di Trento, Italy
,
Emmanuel J. Favaloro
3   Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
03 October 2012 (online)

Abstract

Thrombolytic therapy by infusion of analogs of tissue plasminogen activator (tPA), other recombinant-based plasminogen activators (e.g., alteplase, reteplase, and tenecteplase), streptokinase, and urokinase (uPA) aims to clear blood clots and restore blood flow in occluded blood vessels. Thrombolytic therapy is thereby frequently used in patients with myocardial infarction, stroke, peripheral arterial disease, and massive pulmonary embolism. The leading drawbacks of thrombolysis and associated therapy are represented by a significant burden of inefficacy combined with a high risk of bleeding complications. Recent advances in understanding the complex pathophysiology of vascular occlusions, combined with important technological innovations, are notably improving the therapeutic armamentarium against thrombotic and occlusive disorders. Most of the past and ongoing research in this area have entailed thrombus-targeted fibrinolytic therapy with either tissue- and fibrin-specific immunoconjugates, fibrinolytic-bearing erythrocytes, or fibrinolytic-bearing nanoparticles. The greatest advantages of thrombus-targeted fibrinolysis, especially with biocompatible nanoparticles, are represented by their preferential localization within developing clots, effectual thrombolysis and enhanced safety due to substantial reduction of the dosage of fibrinolytic agents, and reduced onstream adverse effects. These positive biological features, coupled with minimal extravasation and favorable clearance from the circulation, appear advantageous for obtaining more efficacious and durable thrombolytic effects while concomitantly lowering or even eliminating the risk of systemic bleeding complications that typically accompany the injection of free or soluble plasminogen activators. Although an ideal technique has not been definitely established so far, tPA-bearing nanoparticles exhibiting affinity for clot-specific cells and biomolecules coupled with low-frequency ultrasound seem to bear the greatest advantages for prevention and therapy of acute thrombosis, with the possibility to specifically guide and concentrate the thrombolytic agent at the site of pathologic thrombi and clear preexisting clots by a series of mechanisms combining mechanical stress and increased penetration and effectiveness of the drugs employed.

 
  • References

  • 1 Lippi G, Franchini M, Targher G. Arterial thrombus formation in cardiovascular disease. Nat Rev Cardiol 2011; 8 (9) 502-512
  • 2 Lippi G, Favaloro EJ, Cervellin G. Hemostatic properties of the lymph: relationships with occlusion and thrombosis. Semin Thromb Hemost 2012; 38 (2) 213-221
  • 3 Lippi G, Franchini M. Pathogenesis of venous thromboembolism: when the cup runneth over. Semin Thromb Hemost 2008; 34 (8) 747-761
  • 4 Lippi G, Franchini M, Favaloro EJ. Unsuspected triggers of venous thromboembolism—trivial or not so trivial?. Semin Thromb Hemost 2009; 35 (7) 597-604
  • 5 Lippi G, Franchini M, Favaloro EJ. Holiday thrombosis. Semin Thromb Hemost 2011; 37 (8) 869-874
  • 6 Lippi G, Favaloro EJ, Franchini M. Paradoxical thrombosis part 1: factor replacement therapy, inherited clotting factor deficiencies and prolonged APTT. J Thromb Thrombolysis 2012; (e-pub ahead of print). DOI: 10.1007/s11239-012-0753-3.
  • 7 Lippi G, Favaloro EJ, Franchini M. Paradoxical thrombosis, part 2: anticoagulant and antiplatelet therapy. J Thromb Thrombolysis 2012; (e-pub ahead of print). DOI: 10.1007/s11239-012-0748-0.
  • 8 Lippi G, Favaloro EJ, Cervellin G. Prevention of venous thromboembolism: focus on mechanical prophylaxis. Semin Thromb Hemost 2011; 37 (3) 237-251
  • 9 Lippi G, Franchini M, Favaloro EJ. Pharmacogenetics of vitamin K antagonists: useful or hype?. Clin Chem Lab Med 2009; 47 (5) 503-515
  • 10 Cuker A. Unfractionated heparin for the treatment of venous thromboembolism: best practices and areas of uncertainty. Semin Thromb Hemost 2012; 38 (6) 593-599
  • 11 Walenga JM, Jackson CM, Kessler CM. Low molecular weight heparins differ substantially: impact on developing biosimilar drugs. Semin Thromb Hemost 2011; 37 (3) 322-327
  • 12 Favaloro EJ, Lippi G. Laboratory testing and/or monitoring of the new oral anticoagulants/antithrombotics: for and against?. Clin Chem Lab Med 2011; 49 (5) 755-757
  • 13 Favaloro EJ, Lippi G, Koutts J. Laboratory testing of anticoagulants: the present and the future. Pathology 2011; 43 (7) 682-692
  • 14 Favaloro EJ, Lippi G. The new oral anticoagulants and the future of haemostasis laboratory testing. Biochem Med (Zagreb) 2012; 22 (3) 333-346
  • 15 Lippi G, Favaloro EJ, Salvagno GL, Franchini M. Laboratory assessment and perioperative management of patients on antiplatelet therapy: from the bench to the bedside. Clin Chim Acta 2009; 405 (1–2) 8-16
  • 16 Campbell J, Hilleman D. Recombinant peptides in thrombolysis. Semin Thromb Hemost 2010; 36 (5) 529-536
  • 17 Anderson HV, Willerson JT. Thrombolysis in acute myocardial infarction. N Engl J Med 1993; 329 (10) 703-709
  • 18 Armstrong PW, Collen D. Fibrinolysis for acute myocardial infarction: current status and new horizons for pharmacological reperfusion, part 1. Circulation 2001; 103 (23) 2862-2866
  • 19 Lansberg MG, O'Donnell MJ, Khatri P , et al. Antithrombotic and thrombolytic therapy for ischemic stroke: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141 (2 Suppl) e601S-636S
  • 20 Collen D, Dewerchin M, Rapold HJ, Lijnen HR, Stassen JM. Thrombolytic and pharmacokinetic properties of a conjugate of recombinant single-chain urokinase-type plasminogen activator with a monoclonal antibody specific for cross-linked fibrin in a baboon venous thrombosis model. Circulation 1990; 82 (5) 1744-1753
  • 21 Holvoet P, Laroche Y, Stassen JM , et al. Pharmacokinetic and thrombolytic properties of chimeric plasminogen activators consisting of a single-chain Fv fragment of a fibrin-specific antibody fused to single-chain urokinase. Blood 1993; 81 (3) 696-703
  • 22 Imura Y, Stassen JM, Kurokawa T, Iwasa S, Lijnen HR, Collen D. Thrombolytic and pharmacokinetic properties of an immunoconjugate of single-chain urokinase-type plasminogen activator (u-PA) and a bispecific monoclonal antibody against fibrin and against u-PA in baboons. Blood 1992; 79 (9) 2322-2329
  • 23 Peter K, Graeber J, Kipriyanov S , et al. Construction and functional evaluation of a single-chain antibody fusion protein with fibrin targeting and thrombin inhibition after activation by factor Xa. Circulation 2000; 101 (10) 1158-1164
  • 24 Dewerchin M, Lijnen HR, Stassen JM , et al. Effect of chemical conjugation of recombinant single-chain urokinase-type plasminogen activator with monoclonal antiplatelet antibodies on platelet aggregation and on plasma clot lysis in vitro and in vivo. Blood 1991; 78 (4) 1005-1018
  • 25 Zaitsev S, Kowalska MA, Neyman M , et al. Targeting recombinant thrombomodulin fusion protein to red blood cells provides multifaceted thromboprophylaxis. Blood 2012; 119 (20) 4779-4785
  • 26 Ding BS, Dziubla T, Shuvaev VV, Muro S, Muzykantov VR. Advanced drug delivery systems that target the vascular endothelium. Mol Interv 2006; 6 (2) 98-112
  • 27 Lijnen HR, Collen D. Remaining perspectives of mutant and chimeric plasminogen activators. Ann N Y Acad Sci 1992; 667: 357-364
  • 28 Hagemeyer CE, von Zur Muhlen C, von Elverfeldt D, Peter K. Single-chain antibodies as diagnostic tools and therapeutic agents. Thromb Haemost 2009; 101 (6) 1012-1019
  • 29 Cardoso MM, Peça IN, Roque AC. Antibody-conjugated nanoparticles for therapeutic applications. Curr Med Chem 2012; 19 (19) 3103-3127
  • 30 Muzykantov VR, Murciano JC. Attachment of antibody to biotinylated red blood cells: immuno-red blood cells display high affinity to immobilized antigen and normal biodistribution in rats. Biotechnol Appl Biochem 1996; 24 (Pt 1) 41-45
  • 31 Murciano JC, Medinilla S, Eslin D, Atochina E, Cines DB, Muzykantov VR. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol 2003; 21 (8) 891-896
  • 32 Ganguly K, Krasik T, Medinilla S , et al. Blood clearance and activity of erythrocyte-coupled fibrinolytics. J Pharmacol Exp Ther 2005; 312 (3) 1106-1113
  • 33 Ganguly K, Goel MS, Krasik T , et al. Fibrin affinity of erythrocyte-coupled tissue-type plasminogen activators endures hemodynamic forces and enhances fibrinolysis in vivo. J Pharmacol Exp Ther 2006; 316 (3) 1130-1136
  • 34 Ganguly K, Murciano JC, Westrick R, Leferovich J, Cines DB, Muzykantov VR. The glycocalyx protects erythrocyte-bound tissue-type plasminogen activator from enzymatic inhibition. J Pharmacol Exp Ther 2007; 321 (1) 158-164
  • 35 Danielyan K, Ganguly K, Ding BS , et al. Cerebrovascular thromboprophylaxis in mice by erythrocyte-coupled tissue-type plasminogen activator. Circulation 2008; 118 (14) 1442-1449
  • 36 Zaitsev S, Spitzer D, Murciano JC , et al. Targeting of a mutant plasminogen activator to circulating red blood cells for prophylactic fibrinolysis. J Pharmacol Exp Ther 2010; 332 (3) 1022-1031
  • 37 Zaitsev S, Spitzer D, Murciano JC , et al. Sustained thromboprophylaxis mediated by an RBC-targeted pro-urokinase zymogen activated at the site of clot formation. Blood 2010; 115 (25) 5241-5248
  • 38 Pisapia JM, Xu X, Kelly J , et al. Microthrombosis after experimental subarachnoid hemorrhage: time course and effect of red blood cell-bound thrombin-activated pro-urokinase and clazosentan. Exp Neurol 2012; 233 (1) 357-363
  • 39 Murciano JC, Higazi AA, Cines DB, Muzykantov VR. Soluble urokinase receptor conjugated to carrier red blood cells binds latent pro-urokinase and alters its functional profile. J Control Release 2009; 139 (3) 190-196
  • 40 Leach JK, O'Rear EA, Patterson E, Miao Y, Johnson AE. Accelerated thrombolysis in a rabbit model of carotid artery thrombosis with liposome-encapsulated and microencapsulated streptokinase. Thromb Haemost 2003; 90 (1) 64-70
  • 41 Inada Y, Ohwada K, Yoshimoto T , et al. Fibrinolysis by urokinase endowed with magnetic property. Biochem Biophys Res Commun 1987; 148 (1) 392-396
  • 42 Yoshimoto T, Ohwada K, Takahashi K, Matsushima A, Saito Y, Inada Y. Magnetic urokinase: targeting of urokinase to fibrin clot. Biochem Biophys Res Commun 1988; 152 (2) 739-743
  • 43 Torchilin VP, Papisov MI, Orekhova NM, Belyaev AA, Petrov AD, Ragimov SE. Magnetically driven thrombolytic preparation containing immobilized streptokinase-targeted transport and action. Haemostasis 1988; 18 (2) 113-116
  • 44 Orekhova NM, Akchurin RS, Belyaev AA, Smirnov MD, Ragimov SE, Orekhov AN. Local prevention of thrombosis in animal arteries by means of magnetic targeting of aspirin-loaded red cells. Thromb Res 1990; 57 (4) 611-616
  • 45 Orekhov AN, Belyaev AA, Orekhova NM , et al. Prevention of experimental carotid artery thrombosis by magnetic vectoring of aspirin. Lancet 1987; 2 (8558) 564-565
  • 46 Orekhov AN, Beliaev AA, Orekhova NM, Samokhin GP, Ragimov SE. [Local prevention of thrombosis in the dog carotid artery using magnetically concentrated erythrocytes loaded with aspirin]. Biull Eksp Biol Med 1987; 104 (8) 153-155
  • 47 Rusetski AN, Ruuge EK. Magnetic fluid as a possible drug carrier for thrombosis treatment. J Magn Magn Mater 1990; 85 (1–3) 299-302
  • 48 Torno MD, Kaminski MD, Xie Y , et al. Improvement of in vitro thrombolysis employing magnetically-guided microspheres. Thromb Res 2008; 121 (6) 799-811
  • 49 Kaminski MD, Xie Y, Mertz CJ, Finck MR, Chen H, Rosengart AJ. Encapsulation and release of plasminogen activator from biodegradable magnetic microcarriers. Eur J Pharm Sci 2008; 35 (1–2) 96-103
  • 50 Bi F, Zhang J, Su Y, Tang YC, Liu JN. Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials 2009; 30 (28) 5125-5130
  • 51 Ma YH, Wu SY, Wu T, Chang YJ, Hua MY, Chen JP. Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials 2009; 30 (19) 3343-3351
  • 52 Tachibana K, Tachibana S. Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation 1995; 92 (5) 1148-1150
  • 53 Porter TR, LeVeen RF, Fox R, Kricsfeld A, Xie F. Thrombolytic enhancement with perfluorocarbon-exposed sonicated dextrose albumin microbubbles. Am Heart J 1996; 132 (5) 964-968
  • 54 Birnbaum Y, Luo H, Nagai T , et al. Noninvasive in vivo clot dissolution without a thrombolytic drug: recanalization of thrombosed iliofemoral arteries by transcutaneous ultrasound combined with intravenous infusion of microbubbles. Circulation 1998; 97 (2) 130-134
  • 55 Behrens S, Spengos K, Daffertshofer M, Wirth S, Hennerici M. Potential use of therapeutic ultrasound in ischemic stroke treatment. Echocardiography 2001; 18 (3) 259-263
  • 56 Nguyen PD, O'Rear EA, Johnson AE, Lu R, Fung BM. Thrombolysis using liposomal-encapsulated streptokinase: an in vitro study. Proc Soc Exp Biol Med 1989; 192 (3) 261-269
  • 57 Heeremans JL, Prevost R, Bekkers ME , et al. Thrombolytic treatment with tissue-type plasminogen activator (t-PA) containing liposomes in rabbits: a comparison with free t-PA. Thromb Haemost 1995; 73 (3) 488-494
  • 58 Perkins WR, Vaughan DE, Plavin SR , et al. Streptokinase entrapment in interdigitation-fusion liposomes improves thrombolysis in an experimental rabbit model. Thromb Haemost 1997; 77 (6) 1174-1178
  • 59 Gupta AS, Huang G, Lestini BJ, Sagnella S, Kottke-Marchant K, Marchant RE. RGD-modified liposomes targeted to activated platelets as a potential vascular drug delivery system. Thromb Haemost 2005; 93 (1) 106-114
  • 60 Huang G, Zhou Z, Srinivasan R , et al. Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets. Biomaterials 2008; 29 (11) 1676-1685
  • 61 Modery CL, Ravikumar M, Wong TL, Dzuricky MJ, Durongkaveroj N, Sen Gupta A. Heteromultivalent liposomal nanoconstructs for enhanced targeting and shear-stable binding to active platelets for site-selective vascular drug delivery. Biomaterials 2011; 32 (35) 9504-9514
  • 62 Marsh JN, SenPan A, Hu G , et al. Potential of fibrin-targeted streptokinase-activated nanoparticles for early revascularization in acute ischemic stroke [Abstract]. Circulation 2007; 116: II_418
  • 63 Marsh JN, Senpan A, Hu G , et al. Fibrin-targeted perfluorocarbon nanoparticles for targeted thrombolysis. Nanomedicine (Lond) 2007; 2 (4) 533-543
  • 64 Chung TW, Wang SS, Tsai WJ. Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles. Biomaterials 2008; 29 (2) 228-237
  • 65 Shaw GJ, Meunier JM, Huang SL, Lindsell CJ, McPherson DD, Holland CK. Ultrasound-enhanced thrombolysis with tPA-loaded echogenic liposomes. Thromb Res 2009; 124 (3) 306-310
  • 66 Kim JY, Kim JK, Park JS, Byun Y, Kim CK. The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator. Biomaterials 2009; 30 (29) 5751-5756
  • 67 Franchini M, Coppola A. Atherothrombosis in von Willebrand disease: an analysis of the literature and implications for clinical management. Semin Thromb Hemost 2012; 38 (2) 185-199
  • 68 Kawata H, Soeda T, Sung JH , et al. Development of thrombus-targeting, stealth type nanoparticles reactivated by ultrasound for coronary thrombolysis. [Abstract]. Circulation 2011; 124: A12645
  • 69 Marsh JN, Hu G, Scott MJ , et al. A fibrin-specific thrombolytic nanomedicine approach to acute ischemic stroke. Nanomedicine (Lond) 2011; 6 (4) 605-615
  • 70 McCarthy JR, Sazonova IY, Erdem SS , et al. Multifunctional nanoagent for thrombus-targeted fibrinolytic therapy. Nanomedicine (Lond) 2012; 7 (7) 1017-1028
  • 71 Erdem SS, Sazonova IY, Hara T, Jaffer FA, McCarthy JR. Detection and treatment of intravascular thrombi with magnetofluorescent nanoparticles. Methods Enzymol 2012; 508: 191-209
  • 72 Korin N, Kanapathipillai M, Matthews BD , et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 2012; 337 (6095) 738-742
  • 73 Culp WC, Erdem E, Roberson PK, Husain MM. Microbubble potentiated ultrasound as a method of stroke therapy in a pig model: preliminary findings. J Vasc Interv Radiol 2003; 14 (11) 1433-1436
  • 74 Culp WC, Porter TR, Lowery J, Xie F, Roberson PK, Marky L. Intracranial clot lysis with intravenous microbubbles and transcranial ultrasound in swine. Stroke 2004; 35 (10) 2407-2411
  • 75 Alonso A, Dempfle CE, Della Martina A , et al. In vivo clot lysis of human thrombus with intravenous abciximab immunobubbles and ultrasound. Thromb Res 2009; 124 (1) 70-74
  • 76 Lippi G, Favaloro EJ. Antisense therapy in the treatment of hypercholesterolemia. Eur J Intern Med 2011; 22 (6) 541-546
  • 77 Rubiera M, Alvarez-Sabín J, Ribo M , et al. Predictors of early arterial reocclusion after tissue plasminogen activator-induced recanalization in acute ischemic stroke. Stroke 2005; 36 (7) 1452-1456
  • 78 Graham GD. Tissue plasminogen activator for acute ischemic stroke in clinical practice: a meta-analysis of safety data. Stroke 2003; 34 (12) 2847-2850
  • 79 Sena ES, Briscoe CL, Howells DW, Donnan GA, Sandercock PA, Macleod MR. Factors affecting the apparent efficacy and safety of tissue plasminogen activator in thrombotic occlusion models of stroke: systematic review and meta-analysis. J Cereb Blood Flow Metab 2010; 30 (12) 1905-1913