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Stem Cells

Most of the cells in the human body are differentiated and
possess a particular function. Stem cells (SCs) are unique cells
with the exceptional ability to renew themselves indefinitely
by remaining in an undifferentiated state until receiving
signals that lead to a differentiated cell type in maintaining
tissue homeostasis. These two properties have to be well
regulated and are critical in the ontogeny and the proper
maintenance of tissues and organs.

SCs are fundamental players in cell biology by allowing
tissues to be replenished from freshly created cells through-
out their lifetime. The gold standard of a stem cell is the
fertilized egg, which is totipotent and generates a complete
set of specialized somatic diploid cell types, together with
the haploid germline that will be responsible for genetic
transmission to the next generation. As the embryo develops,

an outer protective membrane of trophectoderm encases a
mass of pluripotent stem cells to constitute the inner cellmass
(ICM), thus forming one of the first local SC microenviron-
ments during development. Embryonic stem cells (ESCs) are
artificially created after the ICM is separated from its niche,
and they are cultured in specific conditions by creating a
pluripotent SC type that has the ability to originate all the
embryonic tissues, except trophectoderm. Somatic stem cells
(SSCs) are multipotent cells present in adult tissues or organs
that differentiate into a specific cellular lineage. They remain
dormant in the G0 phase and proliferate through asymmetric
cell division, giving rise to one daughter SC and to one transit-
amplifying cell. Their activation occurs during particular
periods of time or after external injury, and their regulation
is strictly controlled in their niches.

Niches are protective local microenvironments composed
of SCs and neighboring differentiated cell types that secrete
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Abstract The stem cell field owes a great deal to the previous work conducted by embryologists
and researchers devoted to reproductive medicine. The time is coming when this
emerging field will pay off in the reproductive sciences by offering new avenues of
understanding gametogenesis and early embryonic development. Human embryonic
stem cells are pluripotent cells that proliferate in vitro while maintaining an undifferen-
tiated state, and they are capable of differentiating into most cell types under
appropriate conditions. Embryo-friendly approaches have been developed as new
methods of obtaining human embryonic stem cells without destroying the embryo.
Somatic stem cells have been identified and isolated from numerous adult organs and
tissues to create a multipotent and autologous source of cells with established medical
indications. Cell reprogramming is now a scientific fact, and induced pluripotent cells, a
new pluripotent cell type, have been generated by the overexpression of specific genes
from a myriad of differentiated adult cell types. Cancer is now considered a stem cell
disease. Cancer stem cells share numerous features with normal stem cells including
hallmarks properties such as self-renewal and undifferentiation. Therefore, the actual
focus of ovarian cancer research on the cancer stem cell model should generate efficient
and personalized treatment designs to improve treatment efficiency.
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and organize the extracellular matrix to allow SCs tomaintain
their unique property of undifferentiation and self-renewal
through asymmetric division.

SCs have enormous potential in the biomedical research
field, and they are used not only as an in vitro research
tool in cellular biology but also as a cellular source for
tissue regeneration and cellular replacement therapies.
SC research has contributed greatly to knowledge about
tissue/organ development from a single cell, tissue engineer-
ing, and cellular repair mechanisms. In addition, these
features make them an ideal instrument for drug screening
and models to study developmental biology. Thus SCs are the
core of promising areas such as tissue engineering, gene
therapy models, and, finally, cell-based therapies.

Depending on their origin, SCs can be obtained from
embryos, fetuses, or adult organisms. However, Japanese
researchers1 have demonstrated that well-differentiated cells
can be reprogrammed to the pluripotent SC status and that
they can generate a new SC type named induced pluripotent
stem cells (iPSs).

ESCs are undifferentiated nonspecialized cells that are
established from preimplantation embryos at the cleavage
or blastocyst stage. Thus the ESCs deriving from the inner
cell mass of a blastocyst present a unique feature such as
the ability to replicate indefinitely without cellular differen-
tiation (self-renewal) while maintaining an infinite prolifer-
ation rate in culture and the capability to differentiate
in vitro into three germ layers: ectoderm, endoderm, and
mesoderm. Furthermore, ESCs injected into host embryos
are capable of contributing to the germline in the
chimeric animals generated. Moreover, after testicular
injection in nonobese diabetic/severe combined immunode-
ficient mice, they produce teratomas. In addition, the gener-
ated ESC lines maintain a normal karyotype, genomic
stability, and express high levels of telomerase activity. These
properties, defined as “stemness,” outline ESCs as a potential
source of specialized cells for future cell replacement
therapies.

Since Thomson’s group isolated ESCs from the ICM of early
human embryos and obtained the first successful human
embryonic stem cell (hESC) line, derivation of hESC cell lines
has evolved from the isolation of the ICM through diverse
methods such as immunosurgery2 and laser dissection3 by
micromanipulation techniques through a laser drilled in the
zona pellucida or through a whole embryo culture.4 Irrespec-
tive of the method used, embryo destruction was mandatory
and the cells obtained were transferred to fibroblast feeder
layers, which serve as a support and supply of growth factors.
However, successful derivation methods without fibroblast
feeder layers5 under conditions known as “feeder free” and
“serum free” have been reported, and they help eliminate the
risk of xeno-contamination during the in vitro derivation
process. Furthermore, translation of the in vitro fertilization
clinic procedures has clearly improved the derivation of hESC
lines to avoid embryo destruction by following a single-cell
biopsy method at the cleavage stage that does not interfere
with embryo viability.6,7 Actually, the derivation of clinical-
gradehESC lines can be achievedwithout embryo destruction

in a cellular culture system, which uses a chemically defined
medium free of animal products (►Fig. 1).

SSCs, also known as adult stem cells, are able to replicate
asymmetrically by generating progenitor cells with a
finite division capacity that finally differentiate into mature
cell types. Thus in each tissue, adult SCs provide a source
of differentiated cells to preserve a homeostatic cell
turnover status due to both tissue demand and/or injury
consequence.8,9

SSCs have been successfully isolated from different adult
tissues (e.g., bone marrow,9 adipose tissue,10 umbilical cord
blood,11 connective tissues of the dermis12 etc.) through
various techniques based on phenotypic markers including
cell surface markers and nonspecific techniques such as the
high-level activity of adenosine triphosphate (ATP) binding
cassette (ABC) transporters.13 These adult SCs present cellular
plasticity, which is clinically useful in SC-based therapies to
generate differentiated cell types. Given their plasticity and
accessibility, many studies are exploring the clinical potential
of adult SCs that are capable of differentiating in awide range
of different lineages in vitro and in vivo obtained from the
same or a different germ layer14–18 (►Fig. 2).

However, the SSCs present in each tissue are few in
number and have a limited long-term proliferation capacity
in culture without undergoing differentiation.19,20 This is a
major limiting factor in using adult SCs for both research and
clinical applications.

Interest in SCs is an undeniable fact given their innate
therapeutic potential in regenerative medicine. However,
practical applications have gradually come about, partly
due to technical problems and to the ethical andmoral debate
about their use. In an attempt to obtain an alternative source
of pluripotent cells without ethical and religious conflict, in
2006, Takahashi and Yamanaka1 identified the factors re-
sponsible for reprogramming somatic cells toward a pluripo-
tent phenotype. The publication of this novel protocol
assumed that the factors responsible for maintaining the
pluripotency status in ESCs were just as well capable of
inducing this capability in somatic cells.

Initially, 24 factors were selected as candidates based on
their functions and their specific expression profile in mouse
ESCs. For the purpose of finding the best combination, they
were introduced through a retroviral vector into mouse
embryonic fibroblasts (MEFs). Finally after various combina-
tions, the authors just cited demonstrated that only four of
these factors were required to induce iPS from MEF colonies:
Oct3/4, Sox2, c-Myc, and Klf4. The iPS cells generated pre-
sented morphology, growth features, and functional proper-
ties indicative of pluripotency, and they also expressed a
significant number of pluripotency markers similar to ESCs.
Nonetheless, the first iPS cells presented a lower expression
level of transcription factors, as well as differences in the
epigenetic profile of promoter regions, compared with ESCs.

Despite the reprogramming process requiring subsequent
modifications of the induction protocols to obtain fully well-
reprogrammed iPS, this finding proved to be the milestone in
the pluripotency rule, and it demonstrated that cellular
reprogramming is feasible1 and applicable in human
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cells.21–23 Currently, however, iPS cells generation focuses on
development safety and efficient methods before reaching
the real clinical approach. Thus therapeutic iPS cells should be
generated through nonintegrative methods to guarantee the
absence of exogenous sequences inserted into the genome
with a view to excluding the possibility of mutagenesis.

In fact, iPS cells can be generated from differentiated
somatic cells with a few defined factors.24 Recent studies
have shown that p53 inactivation (primary tumor suppres-
sor), which regulates the cell cycle, avoids genome mutation
and conserves its stability, thus preventing cellular aberrant
division via apoptosis or senescence. Experimental silencing
p53 through deletion or knockdown improves the efficiency
reprogramming rate and reduces the number of factors
required to achieve it. Hence, silencing p53 not only optimizes
both the number of reprogrammed cells and the time re-
quired for the process. Yet despite p53 inactivation possibly
being key to increased efficiency,25–27 this strategy may
increase the likelihood of either generating cells with an
unstable genome or inducing malignant transformation.

A large number of somatic cells has been reprogrammed
by applying different approaches28–31 including direct trans-
differentiation from one lineage to another32 and disease-/
patient-specific reprogrammed cells,33–35which represent an
invaluable possibility of generating cell types of interest to be
applied to autologous cell replacement therapies (e.g., the
development of specific disease models) (►Fig. 3).

iPS cells are definitely a remarkable achievement, although
their clinical application is presently limited due to serious
obstacles in biosafety terms. Therefore, their clinical uses
shouldwait until accompanied by appropriate differentiation
protocols, antitumoral safety, and a proper functionality
posttransplantation test.

Cancer Stem Cells

The traditional way of explaining cancer initiation and pro-
gression is through the accumulation of somatic mutations.36

This dominant concept implies that cells might progressively
induce the loss of specific tissue features with each mutation

Figure 1 Schematic diagram of the derivation and differentiation of human embryonic stem cell (hESC) lines. Pluripotent cells are isolated from
either the inner cell mass of preimplantation blastocysts or single blastomeres at the four- to eight-cell embryo stage. Isolated cells are plated in
defined hESC medium with or without feeder cell layers to proliferate and select for pluripotent cells. The generated hESC lines are able to
differentiate into all the tissues from all three embryonic germ layers and the germline. ICM, inner cell mass.
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Figure 3 Generation-induced pluripotent stem cell (iPS). Diagram shows the protocol to obtain iPS cells from a patient to generate iPS lines.
These pluripotent cells might be used as both autologous cell replacement therapies and disease-specific iPS lines that mimic the donor’s disease.
Their useful applicability in drug screening toxicity testing and in developing and improving therapies through reproducing human disease in
culture helps evaluate progression and response.

Figure 2 Adult stem cells have been identified in many organs and tissues, responsible for maintaining and repairing the original tissue in which
they are found. They form specialized cell types through differentiation pathways to establish a stable cellular turnover. They are also able to
differentiate into cell types from different germ layers through a process known as plasticity.
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entering a dedifferentiation state and regressing to a primi-
tive phenotype. This transformation might guide uncon-
trolled proliferation and hence increase the number of
affected cells. Once transformed into cancer cells, not only
does their proliferative capacity increase, but also their tumor
formation ability. Theoretically, therefore, in this stochastic
model, once a random mutation and a subsequent clonal
selection have taken place, each cell would be equally capable
of forming a new tumor. However, findings relating to the
cellular hierarchy and tumor heterogeneity responsible for
the different phenotypes advocating original tissue features
suggest that this model may be excessively simplistic.

Several critics have argued against the somatic stochastic
theory and have instead favored an alternative hypothesis.
Cancer stem cells (CSCs) is a model that proposes a hierar-
chically tumoral structure that is similar to normal tissue and
characterized by self-renewal subpopulation cells termed
tumor-initiating cells (TICs) that possess a stemness profile
responsible for the generation of a large population of prolif-
erative cells that are ultimately responsible for tumor
development.37

Remarkable considerations have reinforced the CSC
hypothesis because the tumor can be initiated from a
single cell capable of recapitulating tumoral heterogeneity,
constituted by different cell types including a subset of the
TIC population responsible for maintaining tumoral
growth and the rest of all the heterogeneous lineages
of cancer cells constituting the tumoral bulk with
limited self-renewal capacity. Thus the complete phenotype
of the primary tumor is created, which contrasts with
the stochastic cancer development model and proposes
that all cancer cells have the equal potential to generate a
tumor (►Fig. 4).

An association between normal SCs and CSCs is coherent
because they sharemany features andmolecularmechanisms
regulating the SC function including self-renewal, undiffer-
entiation, long-term survival, organization into a specific
hierarchy, and differentiation capacity.

Under normal conditions, the regulation process, with the
niche established through paracrine signaling pathways,
controls SC and CSC’s self-renewal capacity. Hence, the dy-
namic interactions of stromal cells within a microenviron-
ment may affect tumor development.38 These interactions
between CSCs and the niche involve the activation of inflam-
matory responses and, simultaneously, epigenetic modifica-
tions such as DNA methylation and histone modification
patterns, and genetic transformation, which are essential in
CSCs’ biology because they are ultimately responsible for
tumor heterogeneity.

The CSCs have been isolated from leukemia39 and different
solid tumors, such as breast cancer40 and even ovarian
cancer.41,42 In addition to the stemness profile previously
mentioned, they present other common characteristics: (1) a
distinctive profile of surface markers,37 (2) increased alde-
hyde dehydrogenase activity,43 and (3) chemoresistance to
anticancer agents due to efflux pathways.44,45 Thus these
properties imply an important clinical implication of CSCs in
cancer recurrence.

Normal cellular turnover depends on the adequate ar-
rangement of the events regulating the activation of SCs,
which is driven by different signaling pathways including
Hedgehog (Hh), WNT, NOTCH, and BMP,46 which regulate the
balance between SC renewal and cellular differentiation
within the microenvironment, modulated by epigenetic and
genetic events.

Cancer Stem Cells Chemoresistance

Standard chemotherapy induces DNA damage as an approach
to induce cellular death. However, SCs are generally quiescent
with a great DNA repair capacity, and they have developed
survival mechanisms through their resistance to apoptosis
due to the expression of Bcl-2 family members and to
inhibitors of apoptosis.47 For these reasons, they possess
resistance mechanisms against conventional cytotoxic che-
motherapy. Therefore, this mechanism that enables the pro-
tection of healthy SCs should, in CSCs, make them less
susceptible to conventional therapies. One of the most
well-known CSC resistance strategies involves cell cycle
kinetics remaining in a quiescent state, which makes them
less susceptible to the cytotoxic effects of compounds de-
signed against these cells, with a faster division rate and
shorter cell cycles.48

The overexpression of membrane-bound multidrug efflux
resistance transporters is another chemoresistance mecha-
nism. Ovarian cancer patients who have developed resistance
to the platinum compound are a well-characterized model.
Efflux transporters, such as the ABCB1 (MDR1 or P-glycopro-
tein) and ABCG2/BCRP (breast cancer resistance protein, or
BCRP) members of the ABC family, constitute a cell surface
drug-resistance marker (ATP-binding cassette) responsible
for a lower platinum concentration in the cell that proves
useful in isolating and characterizing ovarian CSCs.49 Further-
more, it is considered a prognosis marker for disease pro-
gression in advanced ovarian cancer.50

Ovarian Cancer Stem Cell Biology

Ovarian cancer is the most lethal gynecologic malignancy. As
a result of unsuccessful screening methods, more than half of
ovarian cancer patients are diagnosed in advanced stage III or
IV. Standard ovarian cancer treatment is based on cytoreduc-
tive surgery followed by platinum/taxane cycles. Unfortu-
nately, these patients present a recurrence rate of 70% after
the initial treatment, and the overall 5-year survival rate of
patients diagnosed with distant disease is only 30.6%.51

Most reports indicate that ovarian cancer arises from the
ovarian surface epithelium, although there is reported evi-
dence that blames the fallopian tube.52 Ovarian cancer is
composed of a heterogeneous group of tumors that are
classified into serous, mucinous, endometrioid, and clear
cell. The epithelial-mesenchymal transition (EMT) is involved
in the malignant transformation of this tumor. The EMT
regulatory program confers the ability to detach from the
primary bulk through the loss of cell adhesion properties to
provide stemness properties including the invasive features
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of cancer cells. In other words, the conversion of epithelial
cells into mesenchymal cells through morphological modifi-
cations and the acquisition of amigratory phenotype result in
increased invasion and metastasis through transcription
factors such as Snail and Slug. The upregulation of these
transcription factors triggered in response to radiotherapy

and chemotherapy induces the transcriptional repression of
the proapoptotic PUMA/BBC3, ATM, and PTEN genes involved
in p53-mediated apoptosis, leading to improved cell survival.
Simultaneously, Snail and Slug not only lead to the transcrip-
tional activation of self-renewal genes, including NANOG,
HDAC1, TCF4, KLF4, HDAC3, GPC3, but also involve the

Figure 4 Stochastic model versus cancer stem cells model in solid cancer. (A) In the stochastic selection hypothesis, cancer might begin from any
mutated somatic cell. (B) The cancer stem cells (CSCs) model implies hierarchical cellular organization inside the tumor. (C) A stochastic model
shows that a cancer cell has the potential to proliferate extensively and not only replicates phenotype complexity. (D) In the CSCs model, one
single cell completely recapitulates the heterogeneous parental tumor phenotype.
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activation of other SC master regulators such as OCT4, BMI1,
and NESTIN.53 Therefore, Snail and Slug are responsible for
increased resistance to chemotherapy drug treatment, and
they stimulate cell metastases and recurrence of ovarian
cancer.

p53’s normal function is associated with favorable results
in chemotherapy and improved clinical outcomes in ovarian
cancer patients.54 p53 regulates apoptosis through different
genes including NOXA, BAX, and PUMA/BBC3. Resistance to
cisplatin is a major cause of treatment failure in human
ovarian cancer; p53 is required for cisplatin treatment to
induce apoptosis in ovarian cancer cells and depends on the
induction of PUMA/BBC3.55 The PI3K/AKT cell-signaling path-
way, crucial for normal cell growth, is commonly overex-
pressed in ovarian cancers. It is associated with tumor
aggressiveness, genome instability, and cellular invasion
and migration, and therefore, compromises the efficiency
activity of both PUMA/BBC3 and p53, thus providing an
additional chemoresistant phenotype to cell proliferation
and survival in ovarian cancer.

The microenvironment is a crucial factor implicated in
malignant cell development. Cancer cells typically capture
more glucose to produce ATP through aerobic glycolisis.56

This effect is associated with the triggering of oncogenes (e.g.,
RAS, MYC) and mutant tumor suppressors (e.g., p53). Besides
oncogenes, hypoxic conditions might independently regulate
glycolysis through hypoxia inducible factor-1α and factor-2α
(HIF-1α, HIF-2α), probably as a result of adaptation to low-
oxygen environments within tumors. Thus it is important to
highlight the microenvironment role because the hypoxia
level within a tumor correlates with critical signaling path-
ways such as NOTCH and BMP,57 which have demonstrated
that hypoxia not only alters cellular energy metabolism and
angiogenesis but also influences the proliferation and main-
tenance of undifferentiation and resistance to chemotherapy.

Variouswide genomic analyses of epithelial ovarian cancer
stage II through IV have acknowledged that high-grade serous
ovarian adenocarcinomas are characterized by p53mutations
in 96% of cases, together with commonly mutated genes such
as NF1, BRCA1, BRCA2, RB1, and cyclin-dependent kinase 12
(CDK12).58 Signaling analyses have indicated that NOTCH and
FOXM1 are significantly involved in serous ovarian cancer
pathophysiology.58

Studies using comparative genomic hybridization have
demonstrated that PI3K and its downstream effectors AKT1
and AKT2 are significantly amplified in aggressive ovarian
carcinomas.59 Tumor suppressor gene PTEN, which antago-
nizes the PI3K-Akt/PKB pathway, has also been seen to be a
negative regulator by dephosphorylating PIP3 and the subse-
quent downregulation of the PI3K-Akt/PKB signaling pathway.
Moreover, PTENmutations have been found only in endome-
trioid ovarian tumors. The absence of PTENmutations in other
histologic subtypes supports the notion that ovarian cancers
arise through distinct developmental pathways.60

Accumulated evidence demonstrates that DNA methyla-
tion patterns of cancer cells are significantly altered if com-
pared with normal cells. CpG islands hypermethylation in
DNA has been associated with not only poor ovarian cancer

prognoses but also with the silencing of major tumor sup-
pressors such as BRCA1/261, DLEC1,62 OPCML, TES, and
RASSF1A.63 Thus these epigenetic changes, which do not
involve changes in the DNA sequence, are implicated in
malignant transformation and progression.

DNA methylation events, which involve the addition of a
methyl group in the cytosine inside CpG sequences, have been
associated with histologic and clinical features of ovarian
carcinomas. SFN, an inhibitor of G2/M progression of cell
cycle progression, is frequently methylated in ovarian clear
cell carcinomas. WT1 is a tumor suppressor that plays an
important role in cellular development and cell survival in
clear cell ovarian tumors.63

Development of ovarian cancer drug resistance might also
result from DNA methylation, which induces the transcrip-
tional silencing of drug response genes, or even the opposite
situation in which DNA hypomethylation could induce the
activation of oncogenes64 and multidrug transporters (i.e.,
ABCG2/BCRP).65

Histone modifications are another epigenetic regulator
mechanism. Acetylation in histones H3 and H4 is associated
with transcriptionally active sequences; hypoacetylation
leads to chromatin condensation that correlates with tran-
scriptional silencing. In line with this, the hypoacetylation of
histones H3 and H4 suppresses the DLEC1 expression in
ovarian cancer and H3 acetylation reduces DNA methylation,
which triggers the expression of claudin-4 (an essential
protein in tight junction formation) that is frequently upre-
gulated in ovarian tumors.66

The epigenetic status influences not only cancer develop-
ment but also the stemness prolife, differentiation and
the quiescent state, whereas the microenvironment is also
crucial in this process. Varied conditions may have an impact
on the niche and its physiology, and include stress, aging,
exposure to cytotoxic substances, and so on. However, selec-
tive pressures of these genetic and epigenetic aberrations are
required to drive and finally establish clonal expansion and
cancer.
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