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                                      Network Organization in Health and Disease: On 
Being a Reductionist and a Systems Biologist Too

  Biological research for the past several centuries 
has searched for mechanisms to explain various 
phenomena. Mechanistic research has often fol-
lowed the script of identifying the putative 
mechanism for a given phenomenon and then 
decomposing that mechanism into its compo-
nent parts and operations   [ 1   ,  2 ]  . The behavior of 
mechanisms depends not just on their parts and 
operations, but also on how they are organized. 
With few exceptions, biologists tended to down-
play the importance of organization, assuming 
the decomposed operations acted sequentially. 
The recent rise of systems biology provides an 
important corrective to this downplaying of 
organization since a systems focus leads biolo-
gists to address the more complicated and 
complex ways mechanisms are organized. 
Under standing complex organization, in which 
operations are not just organized sequentially, 
however, exceeds the ability of scientists to sim-
ulate the functioning of the mechanism in their 
heads. Instead, they must turn to computational 
models and the resources of dynamical systems 
theory. To mark the contrast with more tradi-
tional mechanistic accounts, I refer to the 
 resulting explanations as dynamic mechanistic 
explanations   [ 3 ]  .
  Sometimes those advocating a systems approach 
present it as supplanting the reductionistic 
approach of traditional mechanistic science. 

        Introduction
 ▼
   In multiple fi elds of biology researchers are rec-
ognizing that the phenomena of interest exhibit 
complex dynamics. Rather than functioning at a 
steady state, organisms exhibit oscillations at a 
wide range of frequencies from milliseconds to 
years. Coordination of behavior often involves 
synchronizing these oscillations and entraining 
them to external oscillations. For example, 
organisms from cyanobacteria to humans exhibit 
circadian (approximately 24-h) rhythms that are 
synchronized between cells in multi-celled 
organisms and entrained to the day-night cycle 
on our planet. Moreover, disruptions in these 
oscillations can produce a wide range of disease 
conditions. Understanding oscillatory behavior 
has required a fundamental shift in the explana-
tory strategies of biologists from one that focuses 
primarily on the parts and operations of biologi-
cal mechanisms to one that emphasizes system 
organization and invokes tools such as graph 
theory to understand how these mechanisms are 
organized and linked to one another and dynam-
ical systems theory to understand normal and 
pathological functioning of these mechanisms. I 
explore the transformations that are occurring in 
biology, drawing upon examples from recent 
neuroscience and identifying some of the insights 
that have been applied to mental disorders.
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                                      Abstract
 ▼
   Whereas the challenge for traditional mechanis-
tic science was to identify parts and operations, 
the current challenge in many fi elds of biology 
is to understand how the many parts of mecha-
nisms are organized in networks and their opera-
tions coordinated across these networks. This 
paper explores how tools from graph theory are 
enabling analysis of organization at both macro- 

and micro-levels. In applying these approaches 
to brain regions, systems neuroscientists are 
identifying both small-world organization with 
hubs at the macro-scale and frequently occur-
ring subgraphs that link specifi c brain regions at 
a more micro-scale. This has lead to the discovery 
of networks in which activity in multiple brain 
regions exhibits coherent oscillations and dem-
onstrations that these networks are disrupted in 
various mental disorders.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



S11Original Paper

  Bechtel W. Network Organization in Health … Pharmacopsychiatry 2013; 46 (Suppl. 1): S10–S21 

However, systems models that are advanced by theorists that 
divorce systems explanations from reductionistic discoveries of 
the parts and operations of mechanisms turn out to off er only 
speculative, how-possibly explanations.  1   Dynamic mechanistic 
explanations, in contrast, draw upon the resources of reduction-
istic research identifying parts and operations. When the varia-
bles and parameters in the computational models are grounded 
in identifi ed parts and operations, the computational models are 
more than possible models – they are models of the mechanism 
that is thought to exist in the world. They show how the mecha-
nism, as characterized in the explanatory account, would behave 
under a variety of conditions. Dynamic mechanistic explana-
tions integrate reductionistic and systems approaches.
  The distinctive contribution of systems biology is to recompose 
mechanisms (reversing the decomposition employed in reduc-
tionistic inquiry) and then, in turn, to situate mechanisms in 
specifi c contexts in which they function. Recomposing requires 
locating parts and operations within an organization. One aspi-
ration of many systems biologists is to discover general princi-
ples of organization, which they sometimes refer to as  laws , that 
characterize how diff erently constituted mechanisms that 
implement the same mode of organization will behave. Indeed, 
research in graph theory as it has been applied to biological 
mechanisms has identifi ed a number of organizational princi-
ples. While these organizational principles will not function in 
the same way as laws, classically understood,  2   the prospect of 
identifying and understanding the implications of diff erent pat-
terns of organization off ers promise of a more systematic inquiry 
than would occur if the eff ects of organization in each mecha-
nism had to be analyzed de novo.  3   In this paper I focus on how 
representing the organization of mechanisms in graphs and 
applying to them graph-theoretic analyses is providing a valua-
ble resource for recomposing mechanisms, explaining their 
behavior, and understanding how breakdowns in organization 
result in pathology. To set this up, I will briefl y introduce recent 
accounts of mechanistic explanation in philosophy of science 
and how they apply to major exemplars of explanation in neuro-
science. I then in the section “Representing System Organization 
in Graphs” examine recent contributions to understanding 
organization through graph theory analyses of networks. In the 
section “Applying Graph Representations to Neural Mecha-
nisms” I explore how these ideas have been applied to the brain 
and in the section “Altered Graphs, Disrupted Oscillations, and 
Mental Discorders” show how these have lead to new perspec-
tives on mental disorders.

    A Brief Introduction to Mechanistic Explanation and 
Neuroscience
 ▼
   Ironically, while the search for mechanisms has been a domi-
nant theme in biology, including neuroscience, over the past two 
centuries, it was been largely ignored in philosophy of science 
until the past 2 decades. Philosophical accounts of explanation 
emphasized laws and the derivation of explanations from laws 
by supplying initial conditions   [ 5 ]  . Though this approach worked 
well for some fi elds of physics, it did not fi t actual research in 
biology in which there are few laws to invoke and yet many pro-
posed explanations.  4   Following the lead of biologists who regu-
larly use the term mechanism, several philosophers have 
recently undertaken the challenge of characterizing what biolo-
gists mean by the term and showing how accounts of mecha-
nism are explanatory   [ 1   ,  6   ,  7 ]  . Although vocabulary diff ers, these 
accounts concur in viewing mechanisms as involving parts per-
forming operations organized so that together they generate the 
phenomenon for which an explanation is sought.
  Research on fermentation in the late 19 th  and early 20 th  centu-
ries illustrates the process of investigating mechanisms. 
Although Pasteur had viewed fermentation as a capacity of a 
whole living cell, and thus not subject to further explanation, 
Buchner’s   [ 8 ]   discovery the fermentation occurred in pressed 
yeast juice when sugar was added led researchers to look within 
cells to identify potential intermediates and the enzymes that 
catalyzed each reaction. This initially proved challenging since 
the most plausible candidate intermediates, 3-carbon sugars 
such as methylglyoxal, did not themselves undergo fermenta-
tion when added to yeast-juice preparations as they should if 
they were intermediates. Once Embden, Deuticke, and Kraft   [ 9 ]   
determined that the intermediates were phosphorylated forms 
of these compounds, though, numerous intermediates were 
quickly identifi ed and within the decade they were organized 
into a sequential pathway. Glycolysis quickly became an exem-
plar of successful biochemical explanation of biological phe-
nomena (for details, see   [ 10 ]  ). Similar examples can be identifi ed 
in many areas of neuroscience. Lesions studied in animals and 
autopsies of patients with defi cits in the late 19 th  century led 
researchers concerned with vision to focus on the occipital lobe. 
Hubel and Wiesel’s   [ 11   ,  12 ]   research revealed that neurons in 
part of this region responded to edges but also made clear that 
many other areas of the brain must be involved in vision. By the 
time of Felleman and van Essen’s   [ 13 ]   review over 30 brain 
regions were identifi ed as involved in processing visual stimuli 
and the distinctive contributions of several had been deter-
mined (e. g., diff erent types of motion in MT and MSTd) (for an 
analysis of this history, see   [ 14 ]  ).
  The process of decomposing mechanisms into their parts and 
operations can be iterated and in many cases further decompos-
ing the parts initially identifi ed into their components fi lls out 
the explanations. Research on learning and memory provides a 
useful example. Those researchers seeking an explanation of 
how memories are acquired sought to identify a brain region 
that was involved. In rodent research, a combination of single-
cell recording studies and lesion studies focused attention on the 
hippocampus and the medial temporal lobe more generally. For 

  4      These explanations may invoke laws from physics or chemistry, such as 
Olm’s law, but these laws alone do not suffi  ce as an explanation. Rather, 
what explains the biological phenomenon is the mechanism composed of 
the components characterized by laws. 

  2      Laws were classically characterized as stating fundamental and necessary 
principles that were assumed to provide the explanation for the behavior 
of components. By fi lling in initial values for the variables in the equation 
representing the law one can derive how a component will behave. While 
mathematical representations are used to assess the mode of organization, 
what is most frequently “derived” from the analysis is a qualitative state-
ment of how a certain type of mechanism will behave. 

  3      Simon argued that if nature were not nearly decomposable into compo-
nents whose contributions could be separately understood, it would not be 
intelligible to humans. A similar comment might be made about organiza-
tion  −  if there were not an identifi able set of organizational arrangements 
that had regular eff ects on the mechanisms in which they were employed, 
the behavior of mechanisms might be unintelligible to humans. 

  1      The phase how possibly explanations was introduced by Craver   [ 4 ]  , who 
argues against the explanatory status of mathematical models. Even such 
speculative models can, nonetheless, be extremely useful if they serve as 
guides to identifying the components of the actual mechanisms function-
ing in the world. 
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example, focusing on rat navigation O’Keefe and Dostrovsky   [ 15 ]   
identifi ed neurons in the hippocampus that responded when-
ever a rat traversed a particular part of an enclosure. Drawing 
upon Tolman’s idea that rats solve navigation problems by 
employing a cognitive map, O’Keefe and Nadel   [ 16 ]   concluded 
that the hippocampus generated cognitive maps. During the 
same period, Bliss and Lømo   [ 17 ]   discovered the phenomenon of 
long-term potentiation in hippocampal neurons, a process by 
which these neurons exhibited increased generation of action 
potentials after receiving a tetanus (for a detailed analysis of this 
research, see   [ 18 ]  ). This fi nding was subsequently integrated 
with the research identifying cognitive maps in the hippocam-
pus with the suggestion that long-tem potentiation was respon-
sible for the construction of maps in the hippocampus. 
Long-term potentiation is a process that occurs at synapses and 
subsequent research has revealed many of the key molecular 
processes by which the responsiveness of a post-synaptic cell to 
neurotransmitters is altered. In this case, research that started 
with behavioral studies has given rise to identifi cation of the 
hippocampus as the organ involved, a process occurring at syn-
apses in that organ, and ultimately to chemical reactions within 
the post-synaptic neuron that result in additional receptors 
being incorporated within the membrane at the synapse   [ 19 ]  . 
Although in principle researchers could choose to decompose 
the system further, as Machamer, Darden, and Craver empha-
size, mechanistic research typically bottoms out at a level of 
decomposition at which the operations of parts can be seen as 
accounting for the key behavior with which research began.
  The study of memory mechanisms in the hippocampus is just 
one of numerous examples of research into neural mechanisms 
underlying mental activity. The cognitive revolution that began 
in the 1950s was grounded on the idea that mental capacities 
could be explaining by identifying the information processing 
mechanisms responsible for them. Lacking tools for specifi cally 
identifying neural substrates that performed diff erent informa-
tion processing operations, the components of mechanisms for 
diff erent cognitive phenomena were primarily identifi ed func-
tionally in terms of the operations they performed. For example, 
drawing upon the diff erent sorts of defi cits found in patient 
populations, memory researchers diff erentiated memory sys-
tems for episodic memory, semantic memory, and various types 
of implicit memory, albeit with little success in identifying the 
component operations in each system. Lesion studies also pro-
vided one of the fi rst tools for relating these systems to the 
brain; subsequently these have been complemented with EEG, 
PET, fMRI, and MEG. Initially these tools were applied to localize 
whole mechanisms, but more recently they have been used to 
discover components of responsible networks that contribute 
diff erentially to the phenomenon.
  Insofar as research on mechanisms focuses on taking mecha-
nisms apart to identify their component parts and operations, it 
exemplifi es a reductionistic approach. However, all accounts of 
mechanistic explanation recognize that the parts and operations 
must be organized for a mechanism to generate any phenome-
non beyond what individual parts perform. Locating compo-
nents in an organized system is what I am referring to as 
recomposition. Accounts such as Machamer, Darden, and Crav-
er’s (2000), however, focus principally on sequential organiza-
tion where, as in an assembly line, each component carries out 
an operation on the product of the previous operation. Although 
sequential organization is easy for humans to understand and 
invoke in design, biological mechanisms were not designed to 

generate a phenomenon, but evolved through descent with 
modifi cation. Modifi cations often involved connecting up opera-
tions in a manner that did not respect sequence – an operation 
that might be thought of as occurring later in a sequence might 
be connected to one that occurs earlier (thereby aff ecting subse-
quent iterations of the sequence). As such modifi cations accrued 
over evolutionary time, modes of organization became much 
more complex. Understanding the consequences for the behav-
ior of mechanisms requires going beyond accounts of basic 
mechanistic explanation. Historically, researchers did this on a 
case-by-case basis. For example, after Krebs recognized that the 
intermediates in oxidative metabolism formed a cycle (the tri-
carboxylic or Krebs cycle), he puzzled over the organization and 
speculated as to its signifi cance   [ 20 ]  . More recently, however, 
systems biologists have made used of tools from graph theory to 
represent modes of mechanism organization and their conse-
quences for the functioning of mechanisms.

    Representing System Organization in Graphs
 ▼
   Graph theory provides a powerful tool for representing the 
organization of a mechanism while abstracting from its specifi c 
components and then analyzing the consequences for any mech-
anism instantiating that organization   [ 21 ]  . In a graph, each part 
of the mechanism is represented as a node, often drawn as a 
circle, and the operations through which one node aff ects others 
is represented by a edge or line between them, sometimes with 
an arrow to indicate the direction of eff ect. To understand the 
behavior of a mechanism that satisfi es a graph one must follow 
out the connections between nodes. With some relatively sim-
ple graphs, theorists can do this in their heads, but as pathways 
multiply this becomes much more diffi  cult.
  As researchers began to develop graphs of particular networks, 
it was possible that each would have its own design and that 
there would be no common principles that could be elicited and 
applied more broadly. Each network might be analyzed in a 
computational model (with the graph providing a productive 
guide in developing the model; see   [ 22 ]  ), but there might not 
have been any general principles that could be elicited. In fact, 
however, some powerful organizing principles have been identi-
fi ed and consequences elicited both for the normal behavior of 
mechanisms that employ them and the pathologies that result 
when organization is disrupted. These analyses have proceeded 
both with respect to large-scale graphs of whole mechanisms 
(or systems of multiple mechanisms) and small subgraphs that 
are frequent constituents of larger scale networks. I focus fi rst 
on the organizational principles at the large-scale, then turn to 
the analyses of subgraphs.

   Large-scale organization of graphs
  Mathematicians in the mid-20 th  century performed some of the 
pioneering studies on the properties of particular types of 
graphs. Erdös and Rényi   [ 23 ]   explored graphs that began with a 
set of nodes and randomly added edges between them. They dis-
covered that when the number of connections was much smaller 
than the number of nodes, only small, disconnected clusters of 
connected nodes would develop. However, when the number of 
connections was approximately equal to half the number of 
nodes a phase transition would occur in which a single giant 
cluster emerged. Within clusters there is usually a short connec-
tion path between any 2 nodes; as a result if the nodes exhibit 
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oscillatory behavior, nodes across the cluster rapidly synchro-
nize their activity. These analyses continue to be useful in biol-
ogy. Yook, Oltvai, and Barabási   [ 24 ]   have employed the notion of 
a giant cluster in which all elements would synchronize in their 
analysis of protein interactions in yeast. An alternative type of 
network that was explored involved regular lattices in which 
each node is connected to neighbors within a neighborhood of a 
specifi ed size. In such structured networks the path between 
distant nodes is quite long. Rather then rapidly synchronizing 
activity across such a network, Ermentrout and Kopell   [ 25 ]   
showed that such networks would create waves of activity that 
propagated across the network, fi tting the pattern found in the 
central pattern generators that regulate motor activity in vari-
ous animals.
  In the previous paragraph I implicitly introduced one of the 
measures used to distinguish random networks and regular lat-
tices: random networks have a short mean path length (fewest 
edges that must be traversed to move from one node to another) 
whereas regular lattices have a much longer mean path length. 
Another important measure is how nodes form clusters: the 
clustering coeffi  cient measures the percentage of possible con-
nections among units in a local neighborhood that are actually 
realized. A lattice scores high on this measure whereas a random 
network has a much lower score. Identifying short mean path 
length and high clustering as desirable properties for informa-
tion processing, Watts and Strogatz   [ 26 ]   identifi ed a type of net-
work, which they termed small-world networks, that exhibit 
both properties.  5   They started with a regular lattice and began 
substituting long-range connections for some of the local con-
nections. They showed that relatively few such substitutions 
would produce a large drop in the mean path length while the 
clustering coeffi  cient remained high (     ●  ▶     Fig. 1  ). The result is a 
design of a network in which locally connected components can 
constitute specialized modules while remaining closely linked to 
other components and thus able to rapidly synchronize with 
them.
   Watts and Strogatz identifi ed numerous examples of small-
world networks in both biological and social systems. One of 

their examples was the neuronal network in the nematode 
worm  Caenorhabditis elegans . Through reconstruction from 
electron micrographs of serial sections, White et al.   [ 29 ]   mapped 
out all the synaptic contacts between the 302 neurons found in 
 C. elegans  (the pattern is invariant across individuals).  6   Among 
the claims Watts and Strogatz made for small-world networks is 
that actual mechanisms implementing small-world design 
would be extremely eff ective in processing information. Nodes 
that are highly clustered can be organized into appropriate net-
works for a given information-processing task but as a result of 
short path length, each local region can be modulated by activity 
occurring elsewhere.
  Shortly after Watts and Strogatz focused attention on small-
world networks, Barabási and his collaborators   [ 32 ]   focused 
attention on another way in which many real world networks 
diff er from either lattices or random networks. They focused on 
degree, a measure of the number of edges connected to a given 
node. In random networks, degree is distributed in a Gaussian 
manner over a fairly narrow range, providing a scale of network 
connectivity. What Barabási discovered is that many real world 
networks degree is distributed according to a power-law in 
which most nodes are connected to only a small number of other 
nodes but a few have a very large number of connections. The 
extremely long tail on a power-law distribution means there is 
no characteristic scale over which degree is distributed and so 
such networks are referred to as scale-free. In his discussions of 
scale-free networks, Barabási emphasized their robustness in 
the face of random removal of nodes – since the vast majority of 
nodes have few connections with other nodes, removing them 
has little eff ect on how the network behaves. On the other hand, 
disrupting nodes with unusually high number of edges con-
nected to them often has serious consequences since many 
paths through the network pass through them. In networks with 
high clustering into modules, these nodes are often referred to  
as  hubs , emphasizing their central place in a module or in linking 
multiple modules. Although some biological networks such as 

  6      Varshney, et al.   [ 30 ]   updated the original map, identifying or modifying 
3 000 chemical synapses, gap junction connections, and neuromuscular 
junctions. Sohn, et al.   [ 31 ]   employed a variety of analytic techniques to 
identify modules in the  C. elegans  nervous system and identifi ed 5 clusters 
of neurons that could each be linked with functional circuits experimen-
tally defi ned and that themselves organized into 2 super-clusters. 

  5      The notion of a small-world has a much longer history. For example, it was 
analyzed mathematically by Pool and Kochen   [ 27 ]   in a paper that was cir-
culated for 2 decades before it was published and was established empiri-
cally in a classical social psychology experiment by Milgram   [ 28 ]  . 

    Fig. 1    Watts and Strogatz’s (1998) representation of small-networks as arising as an intermediate between regular lattices and random networks as one 
begins randomly replacing connections in a regular lattice with longer-range ones. The graph shows how path length and clustering change as the probabil-
ity of rewiring increases. Regular lattices exhibit both high clustering and long mean path length whereas random networks exhibit low clustering and short 
mean path length. The broad region in between in which clustering remains high while path length drops to near that of a random network is where small 
worlds reside. Reprinted by permission from Macmillan Publishers Ltd: Nature, 393, Figures 1 and 2, copyright 1998. 
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protein networks are scale-free, in others the spatial limitations 
on numbers of connections and the cost of adding connections 
limits the maximum number of edges that can connect to a 
node; such networks are not fully scale-free. Nonetheless, their 
degree distribution may be broader than a normal distribution 
(they may exhibit a exponential distribution or a exponentially 
truncated power-law distribution). In these networks as well 
nodes with the greatest number of edges may serve as hubs.

    Organization of subgraphs
  Subgraphs are organizations involving a small number of nodes 
that may then be embedded in a larger network by adding addi-
tional connections from or to nodes outside the subgraph. These 
subgraphs can be analyzed for the characteristic behavior they 
support when embedded in larger networks. Prior to the begin-
ning of the 21 st  century, a few exemplars of subgraphs attracted 
attention, but there were no systematic attempts to analyze dif-
ferent patterns of organization as components or building blocks 
of larger networks.
  One of the fi rst subgraph organizations to attract serious theo-
retical interest was negative feedback whereby an operation 
later in a sequence feedbacks back to inhibit an operation occur-
ring earlier in the sequence (     ●  ▶     Fig. 2  ). Although fi rst proposed in 
his design for a water clock by Ktsebios in the 3 rd  century BCE as 
a means of maintaining a constant quantity of water in the sup-
ply vessel so as to generate a constant stream into the recording 
vessel, negative feedback did not become recognized as a general 
principle of organization for two thousand years. Rather, it was 
reinvented in diff erent engineering contexts, such as to control 
furnaces and windmills, as needed until Watt designed the cen-
trifugal governor for the steam engine and Maxwell   [ 33 ]   devel-
oped an abstract mathematical analysis of governors. In the 20 th  
century instances of negative feedback were identifi ed in physi-
ological systems and the cyberneticists   [ 34 ]   celebrated it as a 
general principle of control in biological and engineered sys-
tems. Even so, an important feature of negative feedback, its pro-
pensity to generate oscillations when delays and non-linearities 
are introduced into the feedback loop, was largely ignored in 
biology except by investigators such as Goodwin   [ 35 ]   who were 
seeking to understand endogenous oscillations in biological sys-
tems.

   A notable example of identifying a potentially functionally sig-
nifi cant subgraph arose when, in mapping the complete neuro-
nal network of  C. elegans , White   [ 36 ]   noted “the preponderance 
of triangular sub-circuits” such as shown in      ●  ▶     Fig. 3   and specu-
lated as to their functional signifi cance. From the electron micro-
graphs, White could not ascertain whether connections were 
excitatory or inhibitory, but he considered what would happen 
if the pathways from A to both B and C were excitatory but that 
from B to C was inhibitory: A signal from A would initially elicit 
a response from C, but this would be soon be suppressed as a 
result of the negative connection from B to C. He suggests: “The 
whole system would therefore act as a diff erentiator, the output 
from [C] being proportional to the rate of change of stimulus. As 
the animal is constantly moving, this reformation is probably of 
more value to it than an absolute measure of the stimulus.”
   The analysis of subgraphs advanced from considering individual 
examples to a wide-scale project in the research of Uri Alon as he 
was developing graphical analyses of gene transcription and 
metabolic networks in bacteria and yeast. He began to notice 
“recurring, signifi cant patterns of interconnections” in sub-
graphs of 1 to 4 nodes that appeared much more frequently than 
would be expected by chance. The chance rate was assessed by 
the frequency of the subgraphs in randomly constructed net-
works with the same degree of node connectivity. Alon and his 
collaborators developed an algorithm for searching databases 
specifying network connectivity for unusually frequently occur-
ring subgraphs, which he termed  motifs.   7  
  Alon found what he called a feedforward loop (     ●  ▶     Fig. 4  , left) as 
occurring in “hundreds of non-homologous gene systems”   [ 38 ]   
in the transcription network of  E. coli.  This motif consists of 
three units in which an operon (X) responds to an input signal 
(S) by producing a transcription factor that both regulates an 
operon for an output protein (Z) and an intermediate operon (Y) 
which also produces a transcription factor aff ecting the output. 
(The specifi c substances identifi ed in      ●  ▶     Fig. 4   are the ones 
involved in an instance of the motif in controlling synthesis of 
L-arabinose.) One operon could regulate another in an excitatory 
or in an inhibitory manner and Alon termed a feedforward loop 
 coherent  if both the direct and indirect pathways aff ected the 
output in the same manner (the loop in      ●  ▶     Fig. 4   is coherent). To 
determine what function such a motif might perform, Alon 
turned to mathematical analysis. He found it suffi  cient to use a 
step function to approximate the eff ect of one factor on another 
and an AND- or OR-gate to model the combined eff ect of X and Y 
on Z  8  . When it functioned as an AND-gate, as in the case illus-
trated, the motif functioned as a  persistence detector  in that an 
output was generate only if the input to X persisted. As shown 
on the right in      ●  ▶     Fig. 4  , when the input X is transient, Y begins to 
respond but before it can reach a full response, the input ceases. 
There is no eff ect on Z. But when X persists for several seconds, 
Y builds up and slightly afterwards Z begins to be expressed.
   In other domains, Alon and his collaborators identifi ed diff erent 
subgraphs as meeting the criterion for motifs. In food webs, only 
a sequential arrangement of 3 nodes qualifi ed as a motif, 

  7      Shen-Orr et al.   [ 37 ]   introduced the term: “We generalize the notion of mo-
tifs, widely used for sequence analysis, to the level of networks. We defi ne 
‘network motifs’ as patterns of interconnections that recur in many dif-
ferent parts of a network at frequencies much higher than those found in 
randomized networks.” 

  8      More typically the eff ect of an excitatory or an inhibitory stimulus is mod-
eled with a Hill function, which produces an S-shaped activation curve; the 
step function approximates a very step S-curve. For discussion, see Alon   [ 39 ]  . 

    Fig. 2    A negative 
feedback subgraph. X Y

    Fig. 3    The triangu-
lar sub-circuit White 
(1985) identifi ed as 
occurring frequently in 
the  C. elegans  nervous 
system. 
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whereas in electronic circuits the only 3-node subgraph that 
qualifi ed was a feedback loop. He suggests that the occurrence of 
subgraph design is related to how the larger network behaves 
and that the subgraph may have been selected for its contribu-
tion. Other theorists have picked up on Alon’s language of motifs, 
but have applied the term to subgraphs without respect to their 
frequency in a given network. They then speak of motifs occur-
ring more or less frequently than expected by chance. Tyson & 
Novák   [ 40 ]  , for example, analyze (using ordinary diff erential 
equations rather than Boolean networks) a wide range of sub-
graphs and use these analyses to explain their functioning in any 
context in which they appear in a graph representation of a bio-
logical system. 2 simple subgraphs that Tyson and Novak analyzed 
are the positive and double negative feedback loops (     ●  ▶     Fig. 5  ). 
Given appropriate non-linear relations and parameter values, 
they show both subgraphs can act as bistable toggle switches—
depending on the value of an input signal (delivered, for exam-
ple, to X), the values of the nodes switch from low to high but 
they switch on at a higher value than they switch off . Thus, once 
the input crosses the threshold that turns the switch on, merely 
dropping below that threshold will not turn the switch off . 
Rather, it stays on until the input drops below a signifi cantly 
lower value (     ●  ▶     Fig. 5  , right). Examples of both the double nega-
tive and the positive feedback loops are found in the biochemical 
system that ensure progress through the stages of the eukaryotic 
cell cycle from G 1  (Gap 1 or growth phase) to S (synthesis or DNA 
replication phase), G 2  (Gap2 or continued growth phase), and M 
(mitosis). Progress through the transitions from G 1  to S, from G 2  
to M, and returning from M to G 1  is regulated to insure passage in 

only one direction. At the core of each step is a dimer of a cyclin 
and a cyclin dependent kinase (CDK:Cyclin or mitosis promoting 
factor [MPF]; diff erent cyclins and CDKs are involved at each 
transition). The fi rst involves a double negative feedback loop 
between the CDK:Cyclin and a complex of CDK:Cyclin with CKI, a 
cyclin dependent kinase inhibitor, while the second employs a 
positive feedback loop between CDK:Cyclin and its phosphor-
ylated form (phosphorylation is catalyzed by a member of the 
Wee1 family and dephosphorylation by a member of the Cdc25 
family). Both of these behave as toggle switches and insure that 
the cell does not return to the previous stage. The fi nal transition 
from M to G 1  is regulated by a negative feedback oscillator that 
results in a large rise then fall of CDK:Cyclin activity   [ 41 ]  .

      Applying Graph Representations to Neural 
Mechanisms
 ▼
   In this section I turn to the application of graph theory representa-
tions of organization to neural mechanisms in organisms with 
brains (in contrast to the nematode nervous system discussed in 
the previous section). I proceed as in the previous section by con-
sidering fi rst organization of the large-scale networks relating brain 
regions and then turning to subgraphs found in these networks.

   Large-scale organization of brain networks
  In the section “A Brief Introduction to Mechanistic Explanation 
and Neuroscience” above I briefl y referred to research on the 
mammalian visual system; over the second half of the 20 th  cen-

    Fig. 5    Postive feedback loop subgraph (left) and 
graph showing how as signal increases, response 
sharply increases at θ activate  but does not return to 
lower levels until the signal drops below θ inactivate . 
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    Fig. 4    One of the feed-forward loop motifs exam-
ined by Alon and his collaborators. In this case, Z 
behaves as an AND-gate, initiating production of 
araBAD only when it receives inputs from both X 
and Y. The graph on the right is from a mathemati-
cal simulation of the motif and shows that when X 
experiences a short-lasting increase, it has minimal 
eff ect no Y and none on Z. When X experiences a 
longer increase, suffi  cient amounts of Y accumu-
lates and shortly thereafter Z begins to increase 
in concentrations. (Figure on right reprinted by 
permission from MacMillan Publishers Ltd: Nature 
Genetics, 31, Figure 2a, Copyright 2002). 

1

0.5

input X

X 
(t

)

0

0 2 4 6 8 10 12 14 16 18 20

1

0.5
Y

Y 
(t

)
0

0 2 4 6 8 10 12 14 16 18 20

1

0.5

output Z

Z 
(t

)

0

0 2 4 6 8 10
time

12 14 16 18 20

X=
CRP

Y=
AraC

Sx=
cAMP

Z=
araBAD

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



S16 Original Paper

  Bechtel W. Network Organization in Health … Pharmacopsychiatry 2013; 46 (Suppl. 1): S10–S21 

tury this research resulted in the identifi cation of numerous 
brain regions distinguished by criteria such as cytoarchitecture, 
connectivity, and the topographical maps identifi ed as research-
ers charted how neurons responded to stimuli located in diff er-
ent parts of the organism’s visual fi eld. Drawing upon a large 
number of studies, Felleman and van Essen   [ 13 ]   diff erentiated 
32 cortical regions involved in visual processing and showed 
that 305 of the 992 possible connections were realized between 
them. They presented their results both in a matrix in which 
local clusters are apparent and in a graphical analysis that 
refl ects the hierarchical pattern they identifi ed by distinguish-
ing feedforward, feedback, and lateral connections (     ●  ▶     Fig. 6  ).
   Sporns and Zwi   [ 42 ]   calculated path length and clustering for 
the graph described by Felleman and van Essen as well as ones 
for the complete macaque and cat cortices characterized by 
other researchers and found that all 3 graphs exhibited high 
clustering with short path lengths characteristic of small-
worlds. They also examined regions within the network and 
found that in each network areas diff ered signifi cantly. For 
example, area V4 in the macaque exhibits both a low path length 
and a low clustering coeffi  cient (characteristics of random net-
works) whereas areas V1, V4t, and STPa have high path lengths 
and high clustering (characteristic of regular lattices). In the case 
of V4, it is a highly connected area (21 incoming and outgoing 
connections) but the areas to which it is connected do not them-
selves form a common cluster. Other areas such as area A3a in 
the somatosensory cortex shows the opposite pattern – long 
path lengths and high clustering. It is connected only to areas A1 
and A2. Given the relatively small numbers of nodes and connec-

tions in these databases, the analyses were not able to show a 
scale-free distribution, although all 3 databases did refl ect sig-
nifi cantly higher variance than random or lattice networks, sug-
gestive of the occurrence of hubs.
  The invasive techniques available for most of the 20 th  century for 
mapping neural connections limited researchers to non-human 
species such as the macaque and cat, but in recent decades a vari-
ety of ways of employing magnetic resonance imaging has ena-
bled comparable research on the human brain. One approach has 
used detected correlations in thickness of grey matter between 
cortical areas (the cause of these correlations is currently 
unknown) in multiple subjects as predictive of connections   [ 43 ]  . 
Another is diff usion MRI that provides evidence of myelinated 
fi ber tracks in cerebral white matter. Sporns, Tononi, and Kötter 
  [ 44 ]   introduced the term connectome  9   for the comprehensive 
graph of brain connections at diff erent levels of organization and 
a number of researchers are now combining their eff orts to 
develop a detailed account of the human connectome. (Eff orts 
are also being directed at developing the connectome of other 
species; for research on the fruit fl y connectome, see   [ 46 ]  .)
  Although still in its early phase, connectome research is already 
providing insights into the organization of the human brain. 
Applying measures such as mean path-length and clustering to 
graphs constructed with diff usion MRI has generated evidence 
that the human brain, like the cat and macaque, exhibits a small-
world architecture   [ 47   ,  48 ]  . In addition to measures of path 

  9      Independently Hagmann   [ 45 ]   also introduced the term in his dissertation 
that employed diff usion MRI to identify structural networks,. 

    Fig. 6    Felleman and van Essen’s (1991) matrix indicating connections between cortical visual areas is shown on the left. Each row shows whether a 
connection had been identifi ed between the area shown on the left and the areas indicated at the top of each column. A plus indicates a connection has 
been found. A period indicates that a connection has been sought but not found. A blank square indicates that the pathway has not been tested for and a 
question mark indicates confl icting evidence. On the right is their graphical representation of the hierarchical organization among these regions as well as 
the sub-cortical areas and a few non-visual areas. From Felleman, D. J., & van Essen, D. C., Distributed hierarchical processing in the primate cerebral cortex, 
 Cerebral Cortex , 1991, 1, Table 3 and Figure 4, by permission of Oxford University Press. (Color fi gure available online only.) 
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length and clustering, connectome researchers have focused on 
identifi cation of modules as brain areas with extensive intercon-
nections and hubs that link them. I will focus more specifi cally 
on hubs when I turn to the identifi cation of motifs in brain net-
works, but for now note that Hagmann et al.   [ 49 ]   identifi ed 
numerous hubs located along the anterior-posterior medial axis 
of the brain which included the rostral and caudal anterior cin-
gulate cortex, the parcentral lobule, and the precuneus. These 
hubs are highly connected to each other and between them con-
nect to regions in virtually all other areas in both hemispheres. 
This suggests a central network that is important for directing 
communication through the brain.
  A major reason for interest in the structural organization of the 
connectome is that connections between brain areas are likely to 
serve functional ends such as information exchange. Accord-
ingly, connectome researchers have explored graphing informa-
tion secured in various ways about functional connectivity, 
characterized in terms of statistical dependence between meas-
ures of brain activity in diff erent brain regions   [ 50 ]  . Such 
dependence is often identifi ed between recordings showing 
oscillatory activity such as EEG, which detects oscillations in 
electrical potentials in the 1–100 Hz range. It is diffi  cult, how-
ever, to localize the source of activity recorded with EEG. Biswal 
et al.’s   [ 51 ]   discovery, through time-series analysis of ultraslow 
oscillations ( < 0.1 Hz) in fMRI recordings, provided a means of 
studying coherence between oscillations that could be localized 
to specifi c brain regions. During the same period Raichle and his 
collaborators began to analyze fMRI recordings made in the rest-
ing state in which subjects lay quietly in the scanner not directed 
to perform any task   [ 52 ]  . Their initial interest was in brain 
regions that showed greater activity in the resting state than in 
task conditions; they identifi ed these regions as constituting the 
default mode network. Cordes et al.   [ 53 ]   developed functional 
connectivity MRI (fcMRI) analysis that applied correlational sta-
tistics to resting state BOLD time series data to determine pat-
terns of synchronization and identifi ed networks of regions with 
corrected activity. The approach has been applied in particular 
to the default node network   [ 54 ]  .
  As was hoped, evidence soon developed that the functionally 
characterized networks largely  10   correspond to those identifi ed 
structurally. For example, Greicius et al.   [ 56 ]   showed that the 
regions in the default mode network are anatomically connected 
while van den Heuvel et al.   [ 57 ]   found that 8 of the nine net-
works they identifi ed in the resting state correspond to ones that 
can be characterized anatomically as connected by fi ber tracts. 
Moreover, when analyzed graph-theoretically, these networks 
were found to exhibit modular small-world architecture   [ 58 ]  . Of 
particular importance, like the structural analyses discussed 

above, these functional analyses identifi ed medial areas in the 
default mode network, such as the precuneus and the posterior 
cingulate cortex, as extremely well-connected hubs   [ 59 ]  . These 
results in particular have elicited new interest in the precuneus 
and the posterior cingulate cortex and their role in various cog-
nitive activities   [ 50 ]  .

    Organization of subgraphs linking brain regions
  As with other biological networks, analysis of brain networks is 
revealing subgraphs that help explain brain function. Sporns and 
Kötter   [ 60 ]   counted the frequency of subgraphs of 2–5 nodes 
across the macaque visual cortex, macaque cortex, and the cat 
cortex and identifi ed several frequently occurring subgraphs 
whose z-score was greater than 5 (i. e., their frequency was 5 
standard deviations above the mean) across of variety of random 
and lattice networks. The one 3-node subgraph that met this 
condition is shown on the left of      ●  ▶     Fig. 7  ; Sporns   [ 61 ]   named 
this the dual dyad motif as it consisted of 2 sets of reciprocal 
connections (dyads) joined at a common node. As a comparison, 
when Sporns and Kötter examined the neuronal network of  C. 
elegans  this subgraph was not signifi cantly increased in fre-
quency but instead the two shown on the right in      ●  ▶     Fig. 7   were. 
They took this as an indication of diff erent processing needs in 
mammals and worms; in particular, Sporns has long empha-
sized that mammals must both segregate and integrate informa-
tion processing and his analysis points to how the dual dyad may 
serve to integrate information processing performed in separate 
clusters. When they examined nodes that participated in the 
dual dyad motif, they found increased participation only in areas 
that constituted hubs – nodes that are characterized by rela-
tively low clustering, short path lengths to the rest of the net-
work, and high centrality (fraction of shortest paths that go 
through the node). The 2 dyads constituting the dual dyad make 
sense at such hubs as means of linking nodes from diff erent clus-
ters. Vicente et al.   [ 62 ]   demonstrated that dual dyads would pro-
mote zero phase-lag synchrony across long distances, suggesting 
that they can promote communication among brain areas (when 
regions are synchronized, action potentials received from one 
area are more likely to elicit response in the receiving area).
   Sporns, Honey and Kötter   [ 63 ]   expanded on this analysis. They 
used a somewhat diff erent criterion for the increased frequency of 
a subgraph, treating it as signifi cantly increased if it had a z-score 
greater than 3 when compared both to random and to lattice con-
trols. By this criterion, a number of regions exhibit signifi cantly 
increased participation in the dual dyad: VP, MSTd, V4, DP, FST, 46, 
7a, 7b, Ig, STPp, and TH. 3 other areas, LIP, VIP, and FEF, exhibit 
increased participation in another motif (which adds a one way 
connection between the 2 nodes not connected in the dual dyad). 
Of the brain areas that participate in the dual dyad, V4 is the most 
frequent; moreover, when it appears in the dual dyad, V4 is typi-
cally the apex node. In this position, it serves to link 2 nodes that 
are constituents of distinguishable clusters or modules.

    Fig. 7    On the left is the dual-dyad motif found 
frequently in networks relating brain regions in 
mammals. The dual-dyad does not occur with 
elevated frequency in  C .  elegans , but the 2 sub-
graphs on the right do. 

  10      There are numerous functionally related areas that are not directly con-
nected structurally. However, relatively short indirect structural connec-
tions can typically be identifi ed   [ 55 ]  . 
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  Using a variety of criteria such as node degree, motif participa-
tion, and centrality, Sporns, Honey, and Kötter identifi ed V4, FEF, 
46, 7a, TF, 5, and 7b as the most likely hubs in the macaque cor-
tex. All but V4 counted as connector hubs due to the diversity 
and distance of the regions to which they connect whereas most 
of V4 connections are to other visual areas, including areas in 
both visual streams. It thus counts as a provincial hub. The con-
nector hubs turned out to be highly connected among them-
selves, forming what Sporns, Honey, and Kötter call “hub 
complexes.” They analyzed the eff ects of removing the 2 types of 
hubs on the graph theoretic measures of the overall network 
structure – deleting a connector hub increased the small world 
character of the network as the increased clustering more than 
compensated for the increase in path length. In contrast, delet-
ing a provincial hub reduced the small-world character of the 
network as a result of decreasing clustering.

     Altered Graphs, Disrupted Oscillations, and Mental 
Discorders
 ▼
   Graph theory analyses of the networks relating brain areas are 
useful both for understanding how these networks support cog-
nitive functions (in   [ 64 ]  , I argue that they require developing a 
new conception of the cognitive architecture subserving cogni-
tive performance) and how disruptions in graph structure char-
acterize mental disorders. In this section I turn briefl y to the 
latter use and show how identifying the altered graphs found in 
brains of patients with mental disorders are providing new 
insight into these disorders. Although the linkage between 
structural and functional graphs remains important for under-
standing these disorders, it is the functional graphs, based on 
synchronized oscillatory behavior at the lower frequencies 
observed in fMRI, that are proving especially insightful. Altera-
tions in the pattern of synchronization between brain regions 
corresponds to altered exchange of information and this off ers 
promise in explaining the altered cognition exhibited by patients 
suff ering these disorders.
  In the previous section I introduced the default mode network, a 
network of brain regions that was initially identifi ed as being 
less active in task conditions than in the resting state. Episodic 
memory tasks were an exception: regions constituting the 
default mode network remained highly activity in these tasks 
  [ 65 ]  . Drawing upon the literature on undirected thinking or 
mind-wandering   [ 66 ]  , several researchers inferred that the 
default mode network was involved in ruminations about the 
events of one’s life and planning future activities that partici-
pants would pursue while resting quietly in the scanner. Thus, 
Buckner, Andrews-Hanna, and Schacter   [ 67 ]   link mind-wander-
ing to the ability to carry out “fl exible self-relevant mental 
explorations – simulations – that provide a means to anticipate 
and evaluate upcoming events before they happen” (p. 2). 
Although other researchers have advanced alternative interpre-
tations of the primary function of activity in the default mode 
network, the case that it is employed in refl ection and planning, 
and may fi gure importantly in how subjects conceptualize 
themselves, is compelling.
  In the decade since the characterization of the default mode net-
work, researchers have found altered activity in the default 
mode network in patients with a wide range of mental disorders 
including dementia, Alzheimer’s disease, autism, schizophrenia, 
anxiety and depression, obsessional disorders, attention-defi cit/

hyperactivity disorder, and post-traumatic stress disorder   [ 67      –
 69 ]  . This, however, only provides part of the picture. Other net-
works that can be identifi ed by their coherent patterns of 
oscillation in the resting state become active in various task con-
ditions, and a crucial part of normal brain function is the process 
of switching between networks. Altered behavior in the default 
mode network in a given mental disorder may be an eff ect or a 
cause of disrupted engagement between networks   [ 69 ]  . In this 
paper, however, I focus only on disruptions found in the default 
mode network.
  Research on Alzheimer’s disease has revealed some of the 
strongest evidence of atypical activity in the default mode net-
work. A clue to such atypical activity was the fi nding that Alzhe-
imer’s patients exhibit reduced metabolism in brain regions 
corresponding to the posterior portions of the default mode net-
work – the posterior cingulate cortex/retrosplenial cortex, the 
inferior parietal lobule, and lateral temporal cortex   [ 70 ]  . These 
same regions also exhibit atrophy in Alzheimer’s patients. When 
researchers turned to analyzing default mode network activity 
in fMRI studies, they found that these regions do not exhibit the 
reduction in activation in task conditions that is found both in 
younger subjects or in normally aging adults   [ 71 ]  . The intrinsic 
activity in these regions is also not correlated   [ 72 ]  . Drawing on 
the fact that the plaques found in autopsy of Alzheimer’s patients 
form fi rst in regions of the default mode network has led Buck-
ner and his collaborators to advance the “metabolism hypothe-
sis” that the activity of the network throughout rest results in 
increased metabolism that generated increase in amyloid β pro-
tein that initiate the formation of plaques and tangles   [ 59 ]  .
  Corresponding to these functional fi ndings, researchers applying 
graph-theoretical analyses have identifi ed altered network 
structure in Alzheimer’s patients. Although path length is nor-
mal, they exhibit lower clustering than is found in normal par-
ticipants   [ 73 ]  . The clustering coeffi  cient is particularly reduced 
in the hippocampus, a part of the default mode network, but 
connectivity is increased in the frontal lobe outside the default 
network. The hub structure is especially altered, with the great-
est loss of hubs within the default mode network – especially the 
posterior cingulate cortex and temporal lobe hubs – with mini-
mal eff ect on frontal lobe hubs   [ 74 ]  . These researchers showed 
that using these network measures one can distinguish Alzhe-
imer’s patients from others with mild impairments.
  A quite diff erent pattern of alterations in network structure is 
manifest in schizophrenic patients. Instead of a decrease, Garrity 
et al.   [ 75 ]   found an increase in default mode network activity, 
especially in medial prefrontal cortex and the posterior cingu-
late cortex/retrosplenial cortex during hallucinations, delusions, 
and thought confusions. In terms of network structure, whereas 
Alzheimer’s patients inhibited normal path lengths, schizo-
phrenics exhibit both reduced clustering and increased path 
lengths   [ 76 ]  . Moreover, they exhibit disrupted hubs in frontal as 
well as parietal and temporal lobes   [ 77 ]  . Schizophrenics also 
manifest changes in a second network – salience network, that is 
usually anticorrelated with the default mode network. Thus, 
White et al.   [ 78 ]  , demonstrated greater activity in 2 areas of the 
salience network – the anterior insula and the frontal opercu-
lum – which they argue is consistent with abnormally active 
monitoring for auditory inputs that might explain hallucina-
tions.
  While the study of diff erences in network organization, struc-
tural and function, in patients with mental disorders, is in its 
infancy, research on default mode network activity in patients 
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with other disorders is also yielding suggestive fi nding. For 
example, Kennedy, Redcay, and Courchesne   [ 79 ]  , see also   [ 80 ]   
found that autism patients failed to show normal deactivation of 
the default mode network in task conditions. Given the linkage 
between default mode activity and self-directed rumination and 
planning, the fi nding suggests that continued engagement of the 
default mode network may fi gure in the social defi cits of indi-
viduals with autism. Particularly striking is the correlation they 
observed between medial prefrontal cortex (a region in the 
default network) activity and the degree of social impairment as 
measured by the Autism Diagnostic Interview-Revised. With 
depressed patients Greicius et al.   [ 81 ]   identifi ed a diff erent pat-
tern of alteration in the default mode network, with enhanced 
prefrontal processing and increased recruitment of the subgen-
ual cingulate into the network. Abnormal activity in the sub-
genual cingulate had been identifi ed in several studies of major 
depression and this demonstration of its abnormal recruitment 
into the default mode provides perspective on how the pathol-
ogy operates. These studies point to the promise that analyzing 
the altered dynamics in neural processing in networks such as 
the default mode network can provide valuable new insights 
into mental disorders.

    Conclusions
 ▼
   Traditional approaches to understanding mechanisms empha-
sized strategies for decomposing mechanisms into their parts 
and operations. Although initially this led to identifi cation of 
only a few parts and operation in given mechanisms, continued 
research, especially performed with more powerful search tech-
niques such as genetic screens and neural imaging, identifi ed 
many times more parts, although understanding the operations 
in which they fi gured often lagged. When only a few parts and 
operations were identifi ed, researchers were often able to rec-
ompose the mechanism in their heads (often supported by dia-
grams), tracing out the eff ects of individual components and 
accumulating them. But as the number of components and the 
pathways by which they were connected increased, researchers 
required new tools for understanding organization. Although 
still at an early stage of development (in part, because the graphs 
of brain networks are still in early stages of development), graph 
theoretic analyses are already bearing fruit in characterizing the 
large-scale organization of the brain and the local connectivity 
between regions, providing the basis for dynamic mechanistic 
explanations of mental activity. The investigation of how these 
are altered in patients with mental disorders is beginning to pro-
vide insights into these disorders.
  At the large-scale, the human brain, as well as that of the 
macaque and the cat, has a small-world organization with short 
path lengths enabling rapid coordination across brain regions 
and high clustering, allowing for specialized processing mod-
ules. This alone is not terribly surprising since most natural 
occurring networks exhibit these characteristics. But research-
ers are also identifying more micro-organization such as a hier-
archy of modules linked by hubs. Potentially of great signifi cance 
is the network of hubs along the midline that may play a crucial 
role in coordinating processing across the brain. Not surpris-
ingly, disruption to this hub-structure is a major feature in a 
variety of mental disorders.
  Even if the prominence of small-world organization is not 
unique to the brain, focusing on it leads to a diff erent perspec-

tive on brain organization than has been prevalent in neuro-
science. The idea that the brain is divided into modules that 
perform diff erent information processing tasks has played a cen-
tral role in attempts to understand brain function, but in the 
context of small-world networks with hubs this notion is impor-
tantly recast. The short path length in such networks ensures 
ongoing interaction between diff erentiated modules. In particu-
lar, diff erent areas are able to synchronize their activity, facilitat-
ing communication of information between them, and when 
this fails, mental disorders ensue.
  At the small-scale researchers have both begun to identify sub-
graphs and to analyze the contribution they make to larger 
mechanisms. Identifying those sub-graphs that appeared far 
more likely than expected by chance as motifs, Alon and his col-
laborators addressed the functional contribution of these par-
ticular motifs. Sporns extended the approach in the case of brain 
networks, both identifying the dual dyad as occurring frequently 
and then focusing on the particular parts of the network (hubs) 
in which it occurred. Others such as Tyson have examined sub-
graphs more generally and developed computational models of 
their behavior. Such an approach could further advance the 
understanding of how local organization contributes to the 
behavior of component mechanisms in the brain and provide 
better understanding of how disruptions to such organization 
result in mental disorder.
  The application of graph theoretic analyses brings a systems 
perspective to neuroscience, which has long been dominated by 
the reductionistic emphasis on decomposing parts and opera-
tions and localizing operations in specifi c parts of the brain. But 
it does not supplant the need to identify parts and identify their 
operations but complements it by providing new tools for rec-
omposing the mechanisms as it identifi es modes of organization 
and their eff ects on the operation of mechanisms. The quest to 
understand brain mechanisms and the pathologies that affl  ict 
them requires both reductionistic and holistic perspectives to 
generate dynamic mechanistic explanations.
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